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Molecular vibrational energy ¯ ow : beyond the Golden Rule

by M . GRUEBELE and R. BIGW OOD

Department of Chemistry and Beckman Institute for Advanced Science and

Technology, University of Illinois, Urbana, IL 61801, USA

This article reviews some recent work in molecular vibrational energy ¯ ow

(IVR), with emphasis on our own computational and experimental studies. We

consider the problem in various representations, and use these to develop a family
of simple models which combine speci ® c molecular properties (e.g. size, vibrational

frequencies) with statistical properties of the potential energy surface and

wavefunctions. This marriage of molecular detail and statistical simpli ® cation
captures trends of IVR mechanisms and survival probabilities beyond the abilities

of purely statistical models or the computational limitations of full ab initio

approaches. Of particular interest is IVR in the intermediate time regime, where
heavy-atom skeletal modes take over the IVR process from hydrogenic motions

even upon X E H bond excitation. Experiments and calculations on prototype

heavy-atom systems show that intermediate time IVR diŒers in many aspects from
the early stages of hydrogenic mode IVR. As a result, IVR can be coherently

frozen, with potential applications to selective chemistry.
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1. De® nitions and scope

1.1. Intramolecular vibrational redistribution (IVR)

Vibrational energy ¯ ow plays an important role in the reactivity of molecules both

in the gas phase and in condensed media. It often redistributes energy among many

degrees of freedom on a timescale faster than the breaking of an activated bond.

Conversely, it can govern isomerization or reaction rates by making energy available

to molecular modes not initially activated. E� cient vibrational energy redistribution

therefore becomes an underlying assumption of statistical reaction rate theories, such

as RRKM .

Whether such energy ¯ ow is more appropriately termed `relaxation ’ or

`redistribution ’ depends on how the world is partitioned into `system ’ and `bath ’ , and

on the size of the bath. If we consider the molecule to be our system, and the solvent

to be the bath, then vibrational energy relaxation can take place from molecule to

solvent. If our system is a vibrational overtone of a large collision-free molecule, and

the other modes form the bath, then likewise energy relaxes out of the excited mode

with timescale T
"
. If the entire isolated molecule is viewed as the system, vibrational

energy is conserved and the changes in mode population represent pure T
#

dephasing.

If the molecule is su� ciently large, the overlap

P(t) = r © W (0) r W (t) ª r # , (1.1)

which is the survival probability of an initially prepared nonstationary state W (0),

closely approaches zero at long times. In this limit it becomes sensible to speak of
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M olecular vibrational energy ¯ ow 93

`relaxation ’ out of an initially excited mode into the entire set of . = 3N – 6

vibrational modes, even if . is ® n ite.

The collision-free dephasing process, usually termed `intramolecular vibrational

redistribution’ or IVR for short, concerns us here exclusively. Furthermore, we will

restrict ourselves to the rotationless case on the ground state electronic surface of

covalently bound molecules, where IVR proceeds purely through vibrational

couplings. While necessary for the spectroscopic study of small-molecule IVR,

Coriolis couplings are negligible in large organic molecules because they scale as

E
Cor

E ò } t
Cor

E f (kT
rot

B) " / # , (1.2)

where f is a Coriolis parameter near unity, and B ! 0.1 cm Õ " is the average rotational

constant. A time even longer than the transitional timescale of interest here (5± 100 ps,

section 7) must therefore elapse before Coriolis eŒects contribute to dephasing in large

molecules. Internal rotor motions (e.g. methyl groups) are always important and

cannot be excluded in any limit (Perry et al. 1995).

1.2. Bright state and eigenstate bases

The concepts of `bright states ’ and `eigenstates ’ will be important in the discussion.

If an eigenstate W a of the vibrational Hamiltonian is excited, no dephasing occurs ‹ .

However, molecular spectra are rarely a forest of random intensity transitions to

eigenstates. They are grouped into features (® gure 1.1) (Nesbitt and Field 1996).

Excitation of a single feature W (t) with a short coherent laser pulse of (approximately)

constant amplitude and phase across a feature creates a state W (t = 0) which

subsequently evolves as

W (t) = 3
a

I " / #a exp [– i x a t] w a (1.3)

once the laser is turned oŒat t = 0. I a are the normalized intensities of the eigenstates

accessed from an initial state w
!
, and x a are their angular frequencies (= E a } ò ). The

factors I " / #a are simply the in-phase amplitudes of each eigenstate created by a constant

amplitude and phase laser pulse at t = 0. A single feature W (t) can contain one, or a

very large number, of eigenstates W a , depending on the energy and state density (® gure

1.1).

The evolved feature W (t ! ¢ ) has a very complex nodal structure, similar to that

of the eigenstates of the anharmonic Hamiltonian at high energy or density of states.

In stark contrast, the initial feature W (t = 0) generally has a very simple nodal

structure which can be characterized by one or a few bright states that carry all the

oscillator strength. In the simplest case of one bright state per feature,

W (t = 0) = W
bright

= 3
m

a = "

I " / #a W a , (1.4)

where W
bright

is the bright state, taken to be time-independent in our discussion. In

‹ We will not discuss the following eŒects : transit-time broadening or spontaneous
emission, which can in principle be suppressed by appropriate experimental geometries (e.g. slit-

jets or antiresonant cavities) ; vibronic couplings (more than one electronic state) and the

resulting multiexponential processes ; the cosine roll-oŒof P(t) at t E 0 due to the ® nite number
of eigenstates accessed by the laser pulse ; diŒerences between `relaxed ’ and `unrelaxed ’

emission, all of which are by now well understood (Freed and Nitzan 1980, Fleming 1986, Uzer

1992).
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Figure 1.1. Upper diagram : the anharmonic terms in the Hamiltonian lower the feature

energy and distort its appearance from that of a bright basis state, but memory of the
bright basis state is retained. Lower diagram : an unfragmented and an IVR fragmented

spectral feature. The unfragmented feature (low energy) has an eigenstate with a simple

normal or local mode structure ; the fragmented feature (high energy) consists of
eigenstates with a complex structure, even though the wavefunction corresponding to the

feature is still relatively simple and best represented in a bright basis.

eŒect, the anharmonicity of the underlying Hamiltonian has redistributed the

oscillator strength from a single bright state over a large number of eigenstates which

lie under the envelope of a feature. It is our contention that the bright states in equation

(1.4) have certain well de® ned universal nodal properties resulting from the `weak ’

anharmonicity of H , and that these properties are as characteristic of the total

Hamiltonian as the complex nodal structure of the eigenstates (® gure 1.1 ; sections 3

and 4).
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M olecular vibrational energy ¯ ow 95

It is often discussed in the literature that bright states are arbitrary because they

depend on the manner of excitation, and that P(t) has no meaning unless the manner

of excitation is precisely speci ® ed. This view results from concentrating on the early

timescales of IVR (say, P(t) " 0.1), rather than what we term the transitional or late

timescales, which form the bulk of our discussion. This view is correct from a practical

point of view at short times, where speci ® c couplings dominate the dynamics. It is also

correct in principio on any timescale, if in ® nite predictive accuracy is demanded.

However, it is more useful in many cases to concentrate on the universal properties of

bright states, rather than on their `zoology ’ . The entire problem of IVR is, after all,

simply the question of how experimentally prepared features (initially assemblages of

a few bright states) evolve in time into a phase-decorrelated set of eigenstates.

Phase decorrelation is the key : bright states W
bright

are not eigenstates of the total

vibrational Hamiltonian H , but they are highly phase correlated. The nodal structure

of W
bright

= W (t = 0) is universally simpler than that of the constituent eigenstates W a

(Davis 1993), unlike the nodal structure of a time-evolved highly fragmented feature

W (t ! ¢ ). The bright states and the eigenstates lie at opposite extremes of a

dynamical hierarchy (Davis 1995).

This is not an accident, but a direct result of underlying properties of the

vibrational Hamiltonian (section 4). Brie¯ y, the reasons are : (1) the anharmonic

energy becomes comparable to the harmonic contribution only near the dissociation

limit D and D is much larger than the vibrational spacing x due to the small value of

the Born ± Oppenheimer parameter a = (m
e
} m

nuclear
) " / % E 0.1 ; (2) the virial or

Hellman ± Feynmann principle asserts that any kinetic} potential partitioning is

arbitrary and coordinate-dependent, and does not aŒect the scaling law of anharmonic

couplings (e.g. local and normal mode couplings scale the same). These two points will

be discussed in more detail in section 4 (Madsen et al. 1997). The scaling of

anharmonic couplings is a universal property of H , just as is the trivial absence of

couplings in the eigenstate basis of H . Bright states are remnants of the a ! 0 limit of

the vibrational Hamiltonian.

The simple structure of bright states accounts for the success of what we will label

`bright state bases ’ , such as the normal mode, diagonal anharmonic normal mode,

and local mode pictures. These are eigenbases {W i } of quadratic or slightly corrected

quadratic zero-order Hamiltonians of the type

H
!

= 3
.

i , j= "

gij
g i g

j
, (1.5)

where {g i} is a set of 2 . conjugate momenta and coordinates (e.g. Cartesian, or

M orse-based in the diagonal anharmonic picture). At low energies, the resulting zero-

order states are a good representation of the eigenstates of H , which are simultaneously

the bright states ( ® gure 1.1). `Good ’ means that only one or a combination of a few

basis functions provide an excellent description of the low-energy eigenstates. At high

energies, they are no longer a good representation of eigenstates, but still a good

representation of unrelaxed features W (t = 0) of H and can be constructed from

eigenstates at least approximately using equation (1.4).

Note that in this article we will not argue in favour of any speci® c bright basis such

as normal modes versus local modes : a certain feature W (t = 0) may require three

normal mode basis functions versus only one local mode basis function to be well

represented, but these diŒerences are insigni® cant compared to the tens or thousands

of eigenstates that might be needed to represent a highly fragmented feature state at
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96 M . Gruebele and R . Bigwood

high energy and density of states. This was already recognized by Freed about 20 years

ago in terms of `intermediate ’ and `statistical ’ limits, albeit without justi® cation in

terms of the Born ± Oppenheimer parameter and virial principle (Freed 1976a, b).

Of course most vibrational wavefunctions in a bright state basis are not

experimentally bright states. While all bright state basis functions are distinguished by

an easily assignable nodal structure, only a few states have signi® cant transition dipole

moments in any given experimental con® guration. For pure vibrational transitions,

these are usually overtone or simple combination states ; for vibronic transitions, they

are transitions involving appropriate quantum number changes in Franck± Condon

active modes. Once a consistent basis has been picked, the mechanism of IVR can be

understood in terms of that basis. W e argue that a purely bright state basis is the most

useful one (sections 3 and 4) both for gaining insights into IVR and from a

computational point of view.

Hamiltonians such as equation (1.5) generate a bright basis because they can be

transformed into smoothed eŒective Hamiltonians of the type

H
eff

= 3 x i (v i 1 "
#
) 1 3 v ij

(v i 1 "
#
) (v

j
1 "

#
) 1 I (1.6)

where x i and v ij
are `predictable ’ parameters. In such an action representation (section

3.2.), the full Hamiltonian H would become a resonance Hamiltonian with additional

ladder terms of the type cnm
a ‹

n
am, where the cnm

would be increasingly `unpredictable ’

due to accidental resonances at higher energy or density of states.

The basis functions W i of equations (1.5) and (1.6) are not identical to the

unrelaxed experimental features W (t = 0) of equation (1.4) ; yet at high energy or state

density, they are much closer to the experimentally de ® ned bright states than to the

eigenstates, which have a complicated nodal structure due to cnm
a ‹

n
am resonant

terms. Unrelaxed features and bright basis states can be nearly overlapped by simple

transformations of the type

W (t = 0) E RS W i (1.7)

where S is a linear scaling transformation q i ! cq i , and R is a rotation operator (® gure

1.1). For example, a nominally assigned v
CH

= 6 spectral feature, even in the absence

of extensive IVR fragmentation, would require v
CH

= 4, 5, 6, 7 and a few other normal

mode basis functions to represent the centre energy of the transition accurately. Even

fewer basis functions would be required in a diagonal anharmonic mode basis.

However, a single `stretched ’ normal mode wavefunction S W i (vCH
= 6), su� ces to

accurately represent the nominally v
CH

= 6 spectral feature.

In the presence of multiple resonances, all bright state bases are roughly `equally

bad ’ representations of eigenstates because parameters such as v ij
share the same

fundamental scaling as less predictable speci ® c resonance terms cnm
(Madsen et al.

1997) (section 4). At short times, such a basis can be compared decisively with

experiments only if accurate matrix elements of the full vibrational Hamiltonian H can

be calculated. Yet P(t) at short times obviously does not provide a complete picture of

IVR, especially if only one class of bright states is investigated (e.g. X E H stretching

features). At longer times, the complexity of the wavefunction evolves from a simple

nodal structure to a complex structure (Davis 1993, W u 1995). This structural

hierarchy is governed by the anharmonicity of the underlying Hamiltonian, and the

resulting P(t) shows evidence of universal features such as power law decays (Scho® eld

and Wolynes 1993, Gruebele 1996c), many of which cannot be predicted using purely

statistical assumptions (see sections 6 and 7).
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M olecular vibrational energy ¯ ow 97

1.3. Application of statistics

Statistical descriptions of a system can be of two types. They can be maximally

decorrelated (or `random ’ ) in their class, such as the Gaussian orthogonal ensemble

(GOE) (Brody et al. 1981), or they can retain residual correlations of the system

parameters.

If molecules of large size or at high energy were always in the `maximally random ’

statistical limit, statistical pictures such as the Golden Rule could fully describe the

`kinetics ’ of IVR (Freed and Gelbart 1971). However, they fail to do so because bright

states and features are coupled by terms of the order of E
elec

a
n
, where E

elec
is the

electronic energy scale ( C 2 eV), and n is the diŒerence in the node number of two

bright states (section 3). These couplings can be quite large compared to the local

density of coupled states, thus violating the assumption of perturbation theory when

energy ¯ ow is considered from the point of view of features. The Golden Rule actually

assumes a mixed bright } eigenstate representation, with uncorrelated couplings from

the bright state to the eigenstates, an assumption which is not justi® ed (section 3). The

majority of molecules, (small ones at high energies ( x i and large ones at low energies

E x i ) do not behave according to uncorrelated statistics on certain timescales. As one

of several consequences, P(t) decays highly non-exponentially at transitional to long

times (section 6).

Another reason for looking at bright state bases is our interest in how generic

features of IVR (such as initial rate, or long-term survival probability) are aŒected by

speci® c molecular properties (such as the number of modes, vibrational frequencies,

and scaling of higher order vibrational couplings). In larger molecules with at least

N " 3 second or higher row atoms, basis states are connected by many low- and high-

order couplings, and speci® c resonances are averaged. The universal scaling of

couplings then dominates considerations, allowing the use of some statistical

considerations. Only some statistics can be applied because molecule-speci® c

properties of the vibrational Hamiltonian can still contribute to the dynamics. A

judicious choice must be made in the range between purely statistical models such as

the GOE and full ab initio approaches, which are so far intractable for large quantum

systems.

The fact that statistical approaches are fruitful is not to say that IVR is structureless

even at intermediate to long times, as assumed in the simplest models. It is already

clear that IVR at early times often depends on speci® c coupling structures (Jortner and

Berry 1968, Felker and Zewail 1985). This is the root for the success of studies

employing small model systems. It turns out that energy ¯ ow between vibrational

modes involving heavy atoms shows localization eŒects even at long times, leading to

properties which deviate in some cases from past expectations, and which can explain

previously not fully understood experimental results. The localized nature of IVR,

which emerges naturally in bright state bases, will be discussed at several points in this

review, and ultimately leads to the possibility of controlling and halting the IVR

process itself (Gruebele and Bigwood 1996).

1.4. Timescales

The fact that features resemble bright states at early times, and eigenstates long

after excitation, suggests that IVR must be characterized by at least two timescales,

connected by a transitional timescale. Unlike much earlier work, our interest focuses

on the transitional and late time periods.

This is illustrated in ® gure 1.2. At very early times, any set of eigenstates evolving
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98 M . Gruebele and R . Bigwood

Figure 1.2. Upper diagram : important timescales in IVR. The early timescale where IVR is

well described by a `1 } e decay ’ rate k
IVR

is shown by dashes. It is a well-de® ned

exponential rate in certain cases. The transitional time lies roughly between P(t) E 0.1,
and when P(t) becomes equal to r on average. This is where quantum beats occur in the

`sparse limit ’ , and novel behaviour, such as power law decay, occurs in the `statistical

limit ’ . At late times, the IVR wavepacket covers its available phase space, which can be
far less than the total available in principle under the spectral envelope ( r " r

min
,

F ! 1 } 3). Middle diagram : log± log representation of the same timescales. Power law

behaviour at intermediate time greatly reduces the eŒective IVR rate. Also shown is
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M olecular vibrational energy ¯ ow 99

according to equation (1.3) has a cosine roll-oŒ followed by further decay. We

characterize the early time by a generalization of the rate often used by experi-

mentalists, which is
k

IVR
3 1 } s

e
(1.8)

where s
e

is the time required for P(t) to decrease to 1 } e. In the case of an exponential

decay, k
IVR

is just the exponential rate constant. For cases where no decay below 1 } e

occurs (e.g. weak resonance, dominated by quantum beats (Jortner and Berry 1968,

Felker and Zewail 1985)), the IVR threshold has not been reached and a rate cannot

be de® ned, although there is some energy redistribution among bright basis states.

If N = 1 } r eigenstates with intensities I a contribute to a feature envelope (e.g. the

ten states in ® g. 1.1), P(t) of the entire feature cannot decay below an average value of

r (Smith and M cDonald 1992) at long times. This is so because with uncorrelated

phases, the factors in equation (1.3) still add up to 1 } N = r . A statistical interpretation

is that the bright state is distributed over N eigenstates, and W (t ! ¢ ) retains a

fractional bright state character of r = 1 } N .

If the spectral intensities are known, as in ® gure 1.1, r can be readily calculated

using

r = 3
N

a = "

I #a , (1.9)

assuming that the overall intensity of the feature R I a has been normalized (Stewart

and M cDonald 1983). r clearly always falls in the range between zero (in® nite density

of states) and one (no IVR). A closely related quantity is Heller’ s F parameter (Stechel

and Heller 1984) which can be de ® ned as

F = r
min

} r , (1.10)

where r
min

is the dilution factor if all eigenstates under the feature envelope were to

contribute with maximum intensity while preserving the rate k
IVR

. Due to quantum

mechanical phase cancellation eŒects, F cannot exceed 1 } 3 if the matrix elements of H

are real-valued.

The transitional region connecting these two limits is important. Even for large

molecules where quantum beats are not an issue, this region nonetheless rarely

corresponds to the generally assumed exponential decay. Instead, it shows power law

behaviour before leveling oŒto r (sections 6 and 7). Power law decays are considerably

slower than exponential decays, and lead to a distorted lineshape (® gure 1.2). The

deviation from Lorentzian is small, but the lineshape is clearly narrowed. This

seemingly subtle eŒect has dramatic consequences. The timescale between s
e

and

© P(t) ª = r can cover several orders of magnitude, and the same factors that cause

nonexponential behaviour can be exploited to control IVR during coherent laser

excitation (Gruebele and Bigwood 1996). The fact that IVR in this intermediate

regime is slow compared to the initial k
IVR

can lead to slower-than-expected

isomerization (Leitner and W olynes 1997). It is very important to keep in mind that a

rapid drop of P(t) to 0.1 merely indicates that the equivalent of ten states participate

at early times ; maximum coverage of phase space (F = 1 } 3), if achieved at all, can be

considerably slower.

experimental data on ¯ uorene (Kaufmann et al. 1989), adjusted for ¯ uorescence and
radiationless eŒects. It clearly supports the notion of power law decays at intermediate

times. The transition from exponential to power law occurs when P(t) is already fairly

small, and has a subtle, but dynamically very important eŒect on the lineshape, which is
compared with the standard Lorentzian (lower diagram).
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100 M . Gruebele and R . Bigwood

DiŒerent experimental approaches tend to be more sensitive to measuring either

the early dephasing rate k
IVR

, or the eventual completeness of the IVR process

characterized by r . Both parameters, as well as the expected behaviour in the

transitional time period, must be accounted for by a successful treatment of IVR.

2. A snapshot of past and recent developments

A detailed discussion of the hundreds of papers that have appeared on IVR over

the years is beyond our scope. However, to put recent developments into context and

to assist the reader who needs more detailed accounts, we brie¯ y discuss some earlier

reviews and highlights.

Some of the earliest experimental evidence for the need of a more detailed

understanding of intramolecular dynamics came in the form of anomalies in the

numerous ¯ uorescence spectra of organic molecules accumulated during the 1930’ s

and early 1940’ s. Kortu$ m and Finckh (1943) cite several such examples resulting from

intramolecular energy randomization of various forms, including IVR.

Another classic example appears in the studies of unimolecular dissociation

reactions and free radical recombination reactions during the late 1940’ s and early

1950’ s. Rice, Kassel, Ramsberger and Marcus built this into a coherent picture of the

role played by rapid randomization of excess vibrational energy in these two

complementary reaction classes (Marcus 1952).

By the late 1950’ s and early 1960’ s, there was a great deal of discussion of the entire

class of intramolecular dynamics (Harris 1963), including nonradiative (vibronic)

transitions and IVR (purely vibrational). Although by then numerous experiments

had been performed in solids, liquids, and the gas phase, there was a lack of

experimental data at pressures low enough to preclude molecular collisions.

Consequently, while large strides had been made in the understanding of electronic

radiationless transitions (Kasha 1950), a central issue during this time was how

radiationless vibronic } vibrational transitions could occur in isolated molecules.

Bixon and Jortner (1968) showed that such transitions were not only possible but

necessary, with a set of compelling arguments based on the available experimental

data, and a theoretical explanation of the vibronic couplings that mediate energy ¯ ow.

A key result of this work was the application of Fermi’ s Golden Rule relating the rate

of vibronic transition to the density of states and the coupling strength by the now

familiar formula

C =
2 p

ò
q V #

rms
. (2.1)

In fact, this simple yet elegant result together with the prediction of a Lorentzian

lineshape would form the basis for discussions of IVR for the following 20 years,

starting with the work of Freed (Freed 1976a, Freed and Nitzan 1980) and Rice

(Kay and Rice 1973), who were the ® rst to consider topics such as the eŒects of state

preparation on IVR, appropriate basis representations, random matrix master

equations, and the possibility of nonexponential behaviour.

Spurred by advances in laser science and new spectroscopic techniques, interest in

IVR intensi ® ed during the mid and late 1970’ s. Renewed interest centred mainly

around the characteristic rate with which vibrational redistribution occurred.

Experimenters used a wide range of techniques to measure IVR rates in many diŒerent

organic molecules. Among them were chemical timing experiments (Parmenter 1983),

in which the pressure of a quenching agent, and therefore the quenching rate, was used
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M olecular vibrational energy ¯ ow 101

to gate the dynamics at certain times. Chuang et al. (1983) applied the now common

pump probe technique to this problem.

In addition to determining that IVR rates can range from picoseconds to

nanoseconds, several `anomalies ’ were seen in these experiments. Parmenter (1983)

observed that energy appeared to be transferred preferentially to states with small

quantum number diŒerences n, with an empirical scaling factor 10 Õ
n
. Non-statistical

behaviour was observed even at high vibrational energies in glyoxal (Naaman et al.

1979), and this work laid the foundation for later quantum beat experiments. The

theoretical understanding of IVR progressed hand in hand with the experiments. Rice,

M arcus, Stuchebrukhov (1986), and later Heller contributed to these advances with

their semiclassical and quantum mechanical models, which are extensively reviewed by

Uzer (1991).

During the 1980’ s, the body of experimental data continued to grow, as did the

range of experimental techniques used to study IVR. M any excellent reviews of the

work done during this period exist (Smalley 1982, Parmenter 1983, Bondybey 1984).

A few of the most notable advances include multiphoton ionization (Smalley 1982),

stimulated emission pumping used to study IVR for the ® rst time on the ground state

potential surface (Abramson et al. 1984), multiphoton dissociation (Stephenson and

King 1978), parametric down conversion to achieve picosecond resolution optical

gating (Moore et al. 1983), resonance ¯ uorescence (Stewart and McDonald 1983),

time-resolved ¯ uorescence techniques (Zewail 1983), multiphoton up-pumping

(Puttkamer et al. 1983), hydrogen attachment for preparing molecules in highly

excited vibrational states (Trentwith et al. 1982), and time-resolved infrared emission

(Stewart and McDonald 1983). During this period the eŒects of residual coherence in

`intermediate ’ size systems emerged (Muehlbach and Huber 1986, Felker and Zewail

1985, Puttkamer et al. 1983). The range of molecules studied also grew dramatically,

and spanned simple systems like acetylene (Abramson et al. 1984) that were most

amenable to theoretical treatment, to large organic molecules, through which the

eŒects of alkyl chain length (Smalley 1982) and overall molecular size and functional

groups (Stewart and M cDonald 1983) could be extracted.

As the available experimental database increased, so did the number of apparent

exceptions to the rules. A question central to the validity of the RRKM theory of

reaction rates is the ultimate degree of randomization. Rice was among the ® rst to

discuss the issue of ergodicity in IVR (Nordholm and Rice 1974), followed by

Reinhardt’ s semiclassical quantization treatment (Reinhardt 1982) and Stechel and

Heller (1984) in the developing framework of quantum chaos. Several workers

questioned the validity of the direct one-step bright state to bath couplings

characteristic of the Golden Rule picture, and proposed a sequential `tier ’ picture as

an improvement. A hierarchical picture of IVR in terms of wavefunctions was

introduced by Davis (1995).

The increasing power of computers began to make fully quantum mechanical

simulations of small systems feasible (Bullock et al. 1990), in addition to classical

trajectory simulations and dynamics which started in the 1960’ s (Bunker 1962) and

continue (Ezra et al. 1987, Lu and Hase 1988, M artens and Reinhardt 1990). Powerful

new numerical methods aimed at solving the time-dependent Schro$ dinger equation

were required to carry out such simulations (Feit et al. 1982, KosloŒand KosloŒ

1983). W yatt’ s recursive residue generation method (RRGM ) (Wyatt 1989) represents

the most signi® cant step in the direct time-independent treatment of large Hamiltonian

matrices.
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102 M . Gruebele and R . Bigwood

Non-molecular model systems of coupled oscillators and their properties also

attracted signi® cant interest. These range from classical simulations on low-

dimensional systems (Founargiotakis et al. 1989) to eŒective resonance Hamiltonians

(Kellman and Xiao 1990, M artens 1992) and purely statistical treatments (Persch et al.

1988). The body of this work done before 1990 is also the subject of a detailed review

(Uzer 1991).

High-resolution spectroscopy, which had been enormously successful in charac-

terizing small molecules at low energies, was pushing the eigenstate limit to higher

energies and densities of states in the 1980’ s, through the use of narrower-bandwidth

lasers (McIlroy and Nesbitt 1989) and application of double resonance techniques (Go

et al. 1993, Lehmann et al. 1994) to explore IVR in a range of organic molecules.

Available eigenstate resolution data allowed detailed statistical analyses of molecular

spectra under the in¯ uence of IVR and related couplings (Lehmann 1991, Shalev et al.

1992, Georges et al. 1995). Advances continued in the area of ultrafast techniques,

including the time-resolved emission experiments of Smith and M cDonald (1992) and

correlated photon counting studies of Zewail (1985).

New theoretical models and simulations appeared during the 1990’ s that deviated

fundamentally from the standard Golden Rule picture. Notably, ideas related to

Anderson localization were applied to IVR, yielding a number of unexpected results

(Logan and Wolynes 1990). An essential feature of these models is the notion that

levels share direct couplings primarily with levels that are nearby in quantum number

space, reminiscent of Parmenter’ s earlier experimental deduction (Parmenter 1983).

The detailed nature of level connectivities, or Hamiltonian topology, was shown to

have profound eŒects on IVR, such as a linear rather than quadratic dependence of the

decay rate on anharmonic coupling strength. This type of model was complemented in

the time domain by scaling analysis, indicating the possibility of power law decays

(t Õ ( . Õ " )/ # ) (Scho ® eld and W olynes 1993) rather than exponential rate decays.

The techniques for computing IVR spectra with spectroscopic accuracy continued

to improve (Bentley et al. 1989, Iung and Leforestier 1992). A tier model was used by

Stuchebrukhov et al. (1993) to propose and test superexchange (what we term here

`oŒ-resonant ’ ) IVR, and the special behaviour of rotor modes was considered in more

detail (Martens and Reinhardt 1990, Perry et al. 1995).

Our experimental and theoretical work ® ts into this most recent era. From a

theoretical standpoint, we are particularly interested in large-scale simulations to see

under what circumstances deviations from the Golden Rule appear in large systems

(discounting quantum beats and similar sparsity-related phenomena). The partially

statistical, partially molecular detail-based models we have developed are ideally

suited for this case (Bigwood and Gruebele 1995b, Gruebele 1996c, M adsen et al.

1997). In this connection, the scaling properties of the vibrational Hamiltonian

alluded to in section 1 and discussed in section 4 are of great importance. There are

qualitative diŒerences between IVR at early and intermediate times (Bigwood and

Gruebele 1995b, Gruebele 1996c), and between IVR initiated in hydrogenic modes

(oŒ-resonant) and heavy-atom modes (on-resonant) (Bigwood and Gruebele 1995b,

1997). Experimentally we have therefore studied `heavy-atom ’ IVR because it more

closely mimics the behaviour of large molecules at long times than initiation of energy

¯ ow from hydrogenic modes. In experiments, often only one or a few series of P(t) are

available. P(t) provides only a small window on the redistribution process, a window

that can be shifted by watching energy ¯ ow among second and third row atoms (Geers

et al. 1994, Bigwood et al. 1998, Green et al. 1998) rather than from XH stretches.
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M olecular vibrational energy ¯ ow 103

Prediagonalized manifold
(pertur bation theory without

correlat ions ®  Golden Rule)
|0>

Multi-tier

Edge

States

V 1

V 2

Vk

Ground

state

Energy

shell

|v©>

|v">

Interior

state

QNS
Prediago-

nalizati on

Correlated matrix

Eigenstat e picture

Bose gas

(e.g. BSTR model)
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Nodal structure less

similar to |0>

I

E

Figure 3.1. Pictorial representations of IVR. From top to bottom the diagrams represent the
following. (1) Eigenstate picture ; no information about intensities is intrinsic to this

picture and they must be provided separately. (2) Quantum number space (QNS) picture ;

intensities arise from the mixing of an experimentally bright state with other bright basis
states. (3) Prediagonalized manifold ; intensities arise from coupling a single bright basis

state to an eigenstate-like manifold of dark states. If correlations are neglected, the

Golden Rule results if the perturbation theory assumptions of large density of states and
small rms coupling are not violated. (4) Tier picture ; includes no interference from

coupling loops in Cayley tree implementation. (5) Bose-gas picture ; the . vibrational

modes are considered as receptacles for an arbitrary number of quanta.
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104 M . Gruebele and R . Bigwood

A recent theoretical (Leitner and W olynes 1997) paper closes the RRKM ± IVR

loop full-circle : it uses a factorized Hamiltonian (Bigwood and Gruebele 1995b,

Gruebele 1996c, M adsen et al. 1997) to investigate how IVR leads to slower-than-

RRKM isomerization of stilbene, a long-standing model system for both theory and

experiments.

3. Visualizing IVR

3.1. Eigenstate picture

Figure 3.1 shows ® ve pictorial representations of the IVR process. The simplest is

the eigenstate picture itself. Each eigenstate has a speci® c transition dipole moment

with the state r 0 ª from which the transitions originate, resulting in a spectral envelope.

The spatial structure of the eigenstates can be complicated, and on a state-by-state

basis oŒers little insight into why a particular region of the spectrum shows a simple

Lorentzian-like spectral feature, as opposed to a continuous distribution of randomly

varying intensities.

3.2. Quantum number space model

At the opposite extreme, we consider the bright basis picture, or quantum number

space (QNS) picture ( ® gure 3.1). It is important that the basis chosen be a bright basis

(section 1), whose states have simple well de ® ned nodal patterns. This could be

achieved with a normal mode, local mode, or diagonal anharmonic normal mode

Hamiltonian H
!
. A closely related phase space representation is very commonplace in

the classical dynamics community (Lichtenberg and Lieberman 1983) but is rarely

used in quantum mechanical discussions of IVR (Martens 1992). Note that QNS, like

action space, has only half the dimensionality ( . ) of the full phase space (2 . ), where

. is the number of vibrational degrees of freedom.

Consider two states r v ª and r v´ ª in a bright basis, separated by an energy D E and

with a cumulative diŒerence in node number for all modes equal to n = r v´– v r =

R r v i´– v i r (the `1-norm ’ ). From a perturbation point of view, the mixing between them

is given by

, = V (n ) } D E, (3.1)

where the anharmonic coupling V (n ) decreases exponentially with n (as discussed in

detail in section 4). Both eŒects can be visualized simultaneously in quantum number

space (® gure 3.1). For a basis with . degrees of freedom, each state can be represented

on a Cartesian lattice (QNS) as a point, the vibrational ground state being located at

the origin. This picture is most applicable in anharmonic normal, local and normal

mode bases ; it requires modi® cation for rotor modes (e.g. methyl groups) due to the

diŒerent structure of rotor phase space (vide infra).

States near in energy lie close to a given energy shell ( ® gure 3.1), while states near

in nodal structure have a small value of n, equal to the 1-norm distance between the

states. It is therefore immediately apparent which states are most strongly coupled :

those whose connecting vector is short and has its largest components along QNS axes

corresponding to small vibrational frequencies. Owing to the correspondence between

quantum numbers and actions in units of ò , it also aŒords direct comparison with

diŒusion models of IVR (Scho® eld and W olynes 1993, W u 1996). M ost detailed

classical studies have been performed on small model systems, which show localized

resonances (Fried and Ezra 1987, Kellman and Xiao 1990). Although overlapping

resonances complicate the picture for large . , or at high E , it will be seen that

localized structure persists in IVR for several reasons.

One is the fact that IVR couplings are redundant. This is expressed in a `vibrational
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M olecular vibrational energy ¯ ow 105

triangle rule ’ (Gruebele 1996c) discussed in more detail in section 4 : among randomly

chosen triplets of states, either all are strongly connected to one another or none.

DiŒerent regions of QNS are thus exponentially separated from one another.

Another reason is illustrated by two extreme types of states found in QNS, closely

related to the concept of `extreme motion states ’ (Gambogi et al. 1993b). Edge states

are located near the axes ; their excitation is localized in one or a few modes and

corresponds to (near) overtones. Interior states are located far from the axes, and

correspond to high-order combination bands with somewhat more complicated nodal

structure (Bigwood and Gruebele 1995b, 1997). There are generally fewer states with

spectroscopic bright character (large transition moments with respect to r 0 ª ) as one

moves to the interior of QNS. In a typical experiment IVR therefore proceeds from the

axes to the centre of the energy shell. When oŒ-shell states participate extensively, IVR

is termed oŒ-resonant (`vibrational superexchange ’ (Stuchebrukhov et al. 1993)),

otherwise it is resonant (Bigwood and Gruebele 1995b).

Edge states are less well connected to other states because they lack coupling

opportunities, namely all the hypothetical states outside the ® rst 2 . -tant (octant in

® gure 3.1) that would lie near them. Their average number of couplings is reduced by

a factor of roughly 2 . (Leitner and W olynes 1996a, Pearman and Gruebele 1998a,

see section 4).

Interior states are, in principle, better connected than edge states. However, there

is a competing factor that can signi® cantly reduce the IVR rate from interior states. In

large low-symmetry molecules, the majority of modes become su� ciently localized

such as to be eŒectively ` independent’ from one another. This occurs most easily for

hydrogenic stretching modes (Gambogi et al. 1993b, Pearman and Gruebele 1998a),

but to a lesser extent even for backbone vibrations. This is illustrated schematically in

® gure 3.2 for two cases. For example, if energy E is deposited in an interior state

r n, n ª with two independent local modes populated, each will initially relax at a rate

typical of an excitation energy E } 2, which could be much slower than the rate of

relaxation from r 2n, 0 ª or r 0, 2n ª . Similarly, if E is initially deposited in a speci® c mode,

it may split into independent regions of the molecule governed by a rate k(E´) ! k(E ).

`Independence ’ speci® cally means that there are no anharmonic cross couplings in the

potential between the modes in question. To what extent this condition is satis® ed in

smaller molecules requires more detailed considerations (Pearman and Gruebele

1998a) (see sections 4 and 6).

It is apparent from ® gure 3.1 that in a bright basis picture, the important density

of states is not the total density of states q , but the local density of states q (n )
!

of states

on the energy shell a distance n away in QNS. The reason is that couplings scale

according to equation (3.1) : n, not just D E , enters as a parameter controlling coupling

strength (sections 4 and 7). This is in keeping with chemical intuition that vibrational

motions in well separated parts of a molecule (which are connected by chains of

couplings) should not be strongly coupled.

3.3. Prediagonalized bath

The picture coupling a bright state to a prediagonalized bath was ® rst used to point

out the necessity of nonradiative transitions and IVR in polyatomic molecules (Bixon

and Jortner 1968, Freed 1976a, b), and has been commonly used for about 30 years.

As in section 3.2 (QNS), the bright state is chosen to carry all the oscillator strength.

However, unlike in section 3.2, the bath is prediagonalized to an eigenbasis of H with

one state projected out. Since the bath levels resemble the eigenstates of the full
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mode 1

mode 2

V111 » V222>>V122

E/2

E/2E
E

EE/3

E/3

E/3

E/9

E/9

E/9

E/9

E/9

E/9

E/9

E/9

E/9

Figure 3.2. Two extreme cases of kinetic or distance localization. On the left, energy E is
deposited into a combination band consisting of two localized excitations, which then

undergo IVR at a rate corresponding to E } 2 and a correspondingly lower density of

states. In eŒect, the two halves of the molecule act independently starting at t = 0. On the
right, the input energy excites a localized motion, which spreads into (partially) separated

manifolds, each with a lower eŒective energy of excitation, increasing the timescale of

IVR at each step. These eŒects can limit IVR in large molecules or intermediate-size chain
molecules.

Hamiltonian H in their complexity, this representation eŒectively mixes the eigenstate

and QNS (bright basis) pictures, picking a bright state representation for the initial

state, and an eigenstate representation for the ® nal states. Since the experimentally

prepared feature looks like a bright basis state initially, then loses phase coherence to

look like an eigenstate, the prediagonalized bath picture eŒectively switches pictures

from 3.2 (QNS, early times) to 3.1 (eigenstates, long times). This is both its greatest

strength and weakness.

The anharmonic coupling strength in this basis is distributed over a dense manifold

of bath states, and is therefore small on average. In a matrix representation, k diagonal

energies and k – 1 oŒ-diagonal matrix elements must be determined. This can be done

directly from experiment using the LKL algorithm (Lawrance and Knight 1985,

Lehmann 1991), since a high-resolution rotationless (J = 0) vibrational spectrum

provides an equivalent representation with k transitions and k – 1 relative intensities.

If the oŒ-diagonal matrix elements Va are small and uncorrelated (an often

overlooked assumption), and if the density of prediagonalized states q (E ) is large and

slowly varying across the transition width (Bixon and Jortner 1968), ® rst-order

perturbation theory (Golden Rule) may be applied to yield a rate and IVR survival

probability

k
GR

=
2 p

ò
q (E )V #

rms
and P(t) = P(0)e Õ kGR t. (3.2)

In this formula q is the total density of vibrational states (in contrast to the local

density of states q (n ) to be introduced later), V
rms

is the root-mean-squared coupling

matrix element from the bright state to the prediagonalized bath, and k
GR

is the well-

de® ned Golden Rule rate for an exponential dephasing process. Such a formula

cannot apply at very low energies where q is too small, as the couplings could be

signi® cantly smaller than the mean level spacing, and no meaningful rate can be

de® ned.

It is not generally appreciated that equation (3.2) does not provide any mechanistic

insight into molecular energy ¯ ow, but is simply a restatement of experimental
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M olecular vibrational energy ¯ ow 107

observation. The LKL algorithm provides a direct path from k – 1 relative intensities

and k spectral positions to the k diagonal elements and k – 1 couplings Va mentioned

above. The rms average of the latter yields V
rms

, while the mean spacing between the

diagonal elements yield q . If the requirements of perturbation theory are met, then the

rate (3.2) will of course match the experimentally observed linewidth from which it was

derived. Furthermore, reducing the signal to noise ratio (SNR) will yield a smaller q ,

larger V
rms

, and again the same rate. The only conserved dynamical variable is the rate

k, while q and V
rms

are measurement-dependent.

One could object that an experiment of high SNR can produce unbiased values of

q and V
rms

, and that is indeed true. However, our calculations in section 7 show that

over a large fraction of the interesting energy range, polyatomic molecules do not

explore all available phase space cells (i.e. Heller’ s F ! 1 } 3) (Gruebele 1996c). This

manifests itself in a signi® cant fraction of IVR transitions of very low spectral intensity

which could escape detection and arti® cially lower q . The problem is compounded by

the fact that harmonic state counts also tend to yield low values, comparing

favourably with experimental values, although both are lower bounds.

From a theoretical point of view, equation (3.2) poses similar problems. The

prediagonalized manifold can presumably be computed from a known basis, in whose

terms the Hamiltonian is well understood (e.g. a normal mode representation). Such

calculations are nontrivial for large molecules, and if they have to be carried out,

would obviate the need for a prediagonalized representation since it is no easier to

diagonalize a k – 1 dimensional manifold (bright state missing) than a k dimensional

manifold. As seen in section 7, such explicit calculations generally verify that the

assumptions of small Va and large q (E ) are satis ® ed for larger molecules. However, the

magnitudes of the Va and their average V
rms

are not related to anharmonic couplings

in a known basis in a simple linear fashion. For example, it will be seen in section 7 that

the assumption `because the rate depends quadratically on V
rms

it might depend

quadratically on the average cubic anharmonicity V ( $ )´ is entirely unfounded.

Therefore the value of V
rms

derived from an experiment provides no insight into well

understood molecular parameters, but merely restates the observed properties of the

spectrum.

There are also problems on the transitional timescale. The assumption of

uncorrelated Va is not generally satis ® ed (see section 7 and Bigwood and Gruebele

(1995b, 1997)). If the Va were uncorrelated, their ¯ uctuations about the average V
rms

could be modelled by drawing values at random from a distribution function, e.g. a

normal distribution centred at Va = 0. The lineshape would then be a Lorentzian at

high state densities. In reality, the local nature of anharmonic couplings (see sections

3.4, 3.5 and 4 and 7) leads to correlations in Va which manifest themselves in terms of

signi® cant deviations of P(t) from equation (3.2) at intermediate times. These

deviations are not of the nature of quantum beats, which can occur at small q and short

times in `intermediate case ’ IVR spectra. They result in the fundamental inap-

plicability of exponential decay laws (® gure 1.2) and the concept of a rate constant to

the IVR process due to the nature of the Hamiltonian, which supports bright state

features in addition to eigenstates. Due to these correlations, there is no simple theory

for V
rms

in terms of the spectroscopic cubic coupling constants V ( $ ) (or higher than

cubic couplings V (n
"

$ )).

In the limit where its perturbation assumptions are satis ® ed, the Golden Rule thus

provides an accurate description of the dephasing rate of a feature. However, because

it is still largely an eigenstate representation of the IVR problem (except for one single
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108 M . Gruebele and R . Bigwood

state), it provides no computational help or mechanistic insight into IVR, other than

that the lineshape should be Lorentzian if all couplings to the prediagonalized bath are

uncorrelated and q ! ¢ .

3.4. Tier model

Closely related to the previous two pictures is the tier model ® rst proposed

explicitly about 20 years ago (Freed 1976b, M uthukumar and Rice 1978, Quack

1983). It recognizes that even though q (E ) is large and V
rms

is small in a prediagonalized

basis, anharmonic or kinetic couplings in most bases are typically large (1± 100 cm Õ "

for the lowest order terms) and the local density of directly coupled states is sparse.

This results in a small number of couplings per state (section 4). Starting with a given

bright state, a set of strongly connected states forms a ® rst tier, another set of states

connected to those a second tier, and so forth (® gure 3.1).

The advantage of the tier model is that it can be applied to well characterized basis

sets such as the normal mode representation. The couplings are thus well understood

and can be directly estimated from spectroscopic anharmonicities or ab initio

calculations (Friesner et al. 1993, M adsen et al. 1997). Classi ® cation of states can

proceed either by the order of the coupling (Stuchebrukhov and M arcus 1993), or via

a perturbation criterion (Bigwood and Gruebele 1995b). In eŒect, the tier model

presents the QNS picture with energy as one axis, and similarity of nodal structure

between basis states as the second axis. The only thing that must be kept in mind is that

there can also be important couplings within tiers and across tiers, as is clear from the

QNS picture. No simple tier model (i.e. a Cayley tree without loops) can fully describe

the coupling structure of a bright basis.

Classi ® cation by order is similar in local, anharmonic normal, and normal mode

bases. In the latter case, a suitable prescription would be `tier k 1 1 consists of all states

coupled to states in tier k by a term of order n or lower in the Hamiltonian ’ , where n

is usually 4. This type of scheme is ideal if IVR proceeds through chains of low-order

couplings with oŒ-resonant intermediate states, since such chains progress through the

tier structure in a natural manner (® gure 3.1). The order criterion simply recognizes

that matrix elements tend to decrease exponentially with the quantum number

diŒerence (Parmenter 1983, Rashev 1990) of their constituent wavefunctions.

There are, however, cases when IVR becomes resonant, particularly when heavy-

atom modes and low vibrational frequencies are involved (Bigwood and Gruebele

1995b, 1997, Pearman and Gruebele 1998a). As discussed in section 5, in such cases

higher order direct couplings with n " 4 can dominate over low-order coupling chains

after a critical time s (n ). These couplings are therefore critical in establishing the

dilution factor and F value for the IVR process.

Such cases are not well accounted for by order sorting, because high-order

couplings are neglected. This can be remedied by using a perturbation criterion

r Vij
} D E ij

r , which selects states according to the mixing of wavefunctions in the two

state approximation. Although this includes higher order couplings, it presents its own

problem : pairs of states selected by such a scheme may be pushed apart by low-order

interactions with distant states, while pairs missed by such a scheme may be pushed

together (Pearman and Gruebele 1998a). The same phenomenon persists in the

application of distorted wave operators (Iung et al. 1993, M aynard and W yatt 1995).

Section 5 discusses a sequential classi ® cation scheme which remedies this situation by

coarse-graining the coupling structure : major low-order interactions among basis

states are used to construct a new bright basis which has no IVR (fragmentation), but

approximately correct line centre positions. The relationship between such coarse-
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M olecular vibrational energy ¯ ow 109

grained bright basis states and eigenstates is again the same as between a smoothed

eŒective Hamiltonian and the full vibrational Hamiltonian with all `unpredictable ’

resonances, as discussed in section 1.

The usefulness of classi ® cation schemes such as tier structures can be assessed by

examining energy ¯ ow through the tiers. In many cases our calculations without an

imposed tier structure show a clear temporal hierarchy, indicating the basic soundness

of the idea (Bigwood and Gruebele 1995a, 1997). W hichever selection method is

chosen, the main advantage of this model remains that it allows a direct connection of

theories at a molecular level of detail with experiment.

3.5. Bose-gas model

A point of view which is particularly useful for merging molecular detail with a

statistical treatment treats the vibrational quanta as a Bose gas, in analogy to black

body radiation ((Gruebele 1996c), ® gure 3.1 and the Bose statistics triangle rule model

in section 4). The cavity modes are replaced by . vibrational modes, and the photons

by vibrational quanta. Vibrational quanta are allowed to ® ll the . modes with any

occupation number, and can therefore be treated by Bose± Einstein statistics. This is

appropriate for both thermal excitation and laser excitation, in which the temperature

is replaced by a microcanonical b value.

This point of view is also helpful in the consideration of direct high-order couplings

versus low-order coupling chains mentioned in the description of the tier model. It

translates easily into symbolic manipulation of quanta for the calculation of the total

and local densities of states necessary to examine the prevalence of diŒerent order

couplings (section 4, low- versus high-order resonances).

3.6. Rotor modes

Internal rotor modes are not well treated by the QNS representation in 3.2.

Classically, this results from a discontinuity in the phase space representation for

pendular systems, which have a separatrix at the potential maxima. The best

representation switches from vibrational operators a and a ‹ to rotational operators j i

above the barrier. The zero-order energy level structure switches from vibrator

tunnelling clusters to rotor levels with selection rules depending on the symmetry of

the potential near equilibrium (e.g. threefold for methanol, onefold for H
#
O

#
)

(Martens and Reinhardt 1990, Perry et al. 1995).

The zero-order structure can be reasonably well represented by connecting

semiclassical formulae above (rotor modes) and below (vibrator modes) the barrier

height H . This mapping is illustrated in ® gure 3.3 for the onefold case with the result

that (Pearman and Gruebele 1998b)

E ( ! )
n E 0 E #

v
1 R # E #

r

1 1 R # 1 " / #

E
v

= 4 x ( j– 9 1 –
1

4 0 B

H 1 " / # : 1 1

4 * #
(3.3)

E
r
= {Bj # 1 H } 2}#

R = exp [2 Bj # } H ]– 1.

Couplings between pairs of states either both below or both above the barrier follow

the same rules (derived in section 4) for vibrator modes, except that rotor mode

couplings scale with a Born± Oppenheimer parameter a # instead of a if expressed in
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Figure 3.3. Rotor correlation diagram for the C
s

case for B } H = ¢ to B } H = 1 } 5. B is the

rotor rotational constant, and H is the barrier height.

terms of D j (the one-dimensional (1D) rotor quantum number diŒerence) instead of D n

(the 1D vibrator quantum number diŒerence) (Oka 1967).

The situation is more complex for couplings connecting states near the barrier or

across the barrier. In that case, the vibrator basis must be expanded in terms of the

rotor basis, yielding a distribution of m states contributing each n state. These

distributions can be parameterized in terms of the mode energy E
torsion

and the

quantity B } H , where B is the rotational constant of the internal rotor. The important

fact is that in the near-barrier case, internal rotation can induce multiple quantum

transitions with large jumps in quantum number in either the vibrator or rotor

representation : it becomes `intrinsically ’ oŒ-diagonal in any bright state picture.

The result (section 7) is that couplings between states near the barrier are

enhanced, while couplings high above the barrier decrease rapidly, leading to an

isolation of the rotor mode (Pearman and Gruebele 1998a).

4. State couplings

Two ingredients are required for detailed calculations of IVR : an e� cient way of

generating the molecular Hamiltonian, and an e� cient way for computing the

dynamics of this Hamiltonian in the energy or time representations. In this section we

consider the ® rst of these.

Ab initio calculations and ® ts to experimental data are the most accurate ways of

treating the molecular Hamiltonian. The main drawback of these approaches is their

computational expense when applied to systems with many degrees of freedom. Ab

initio surfaces for tetra- or pentatomic systems and six-dimensional (6D) dynamics are

currently the state of the art in scattering calculations (Munn and Clary 1996). Full 6D

® ts to experimental data are currently the state of the art for adaptation of potential

surfaces to experimental data (Burleigh et al. 1996, Qiu and Bacic 1997, Bigwood et al.

1998). W e will discuss an application of these approaches in section 8 in conjunction
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M olecular vibrational energy ¯ ow 111

with experimental measurements on SCCl
#
. Here we turn to methods which are more

easily extensible to large systems with more than nine degrees of freedom.

In IVR dynamics, the detailed fragmentation pattern of a spectrum or the exact

nature of small quantum beats, are often not of interest. Instead, one wishes to

calculate averaged quantities such as the IVR rate at early times, the dilution factor,

the functional form of P(t) at transitional times, the spectral intensity ¯ uctuations, or

the level spacings. This does not necessarily imply that the molecule is completely in

some statistical limit such as the GOE (Brody et al. 1981), but statistical simpli ® cations

can nonetheless be applied.

We consider a systematic way in which such simpli ® cations of the Hamiltonian can

be derived in the energy representation for use in dynamical calculations (section 5).

The method will be illustrated mainly for the normal mode basis, with a brief

discussion of other basis sets (local, diagonal anharmonic) which show similar

behaviour when treated statistically. The models illustrated here cover a range of

detail, allowing one to `tune ’ how much molecular speci® city is to be retained. The

most complete models can provide excellent agreement with experiment, as discussed

in examples in section 6.

4.1. Scaling of the Hamiltonian

It has long been recognized that matrix elements of vibrational operators in the

normal mode representation decrease exponentially with the quantum number

diŒerence between the wavefunctions (Oka 1967, Parmenter 1983, Bullock et al. 1990).

This arises naturally if the terms in the Hamiltonian are separated into potential

constants in energy units and unitless position operators written in terms of ladder

operators, q = (a ‹ 1 a). A matrix element can then be written as

© v ŕ V(q) r v ª E V (n )
v´,v = © v

"
, v

#
I r V (n )

n 0
.

i = "

q
n i
i r v

"
, v

#
I ª = V (n )

n 0
.

i= "

© v i r q
n i
i r v i ª , (4.1)

where the potential constant V (n )
n decreases exponentially with n = R ni = R r v i´– v

"
r .

The approximation after the ® rst term arises because nth order matrix elements also

have contributions of order n 1 m where m = 2, 4, 6 I . These generally amount to less

than 10 % of the total value of matrix elements except in the cases n = 1 or n = 2

(Madsen et al. 1997).

Scaling is a direct consequence of the Born ± Oppenheimer approximation and the

resulting de® nition of the ladder operators ; in fact, the magnitude of the couplings V (n )
v´,v

depends on n as

V (n )
v´,v

E V ( $ )a
n
Õ $ v̀

n / #v´,v
(4.2)

where a is typically about 0.1, and va v´,v
is a geometrically weighted distance in QNS

between states r v ª and r v ª́ (Bigwood and Gruebele 1995b, M adsen et al. 1997). This

scaling behaviour is universal in the sense that the same scaling with slightly diŒerent

values of a is retained as long as a bright basis is used.

The invariance of the scaling in diŒerent simple coordinate representations is due

to the virial theorem : kinetic and potential terms of a weakly anharmonic potential

(a ! 0.2) are always weighted about equally in the total energy. Unitless momentum

operators i(a ‹ – a) lead to the same scaling as equation (4.2) for coordinates. W hether

mode couplings are kinetic, potential, or any combination thereof, a power series

expansion always leads to a power law ordering of the couplings with n. A lthough the

details of the coupling structure must of course diŒer, the overall appearance of the
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112 M . Gruebele and R . Bigwood

Hamiltonian matrix in all of these representations is governed by exponentially scaled

matrix elements of magnitude given by (4.2).

As a result of the coupling structure, high-energy eigenstates of large low-

symmetry molecules appear to be random admixtures of basis states due to multiple

resonances, while features obtained by summing eigenstates under a spectral envelope

have a simpler structure well represented by a few bright basis states. The fact that such

features exist at all is due to the small ratio a
n

Õ # of nth order anharmonic constants to

the quadratic term in the potential energy surface (PES), i.e. the fact that the

Born± Oppenheimer approximation for covalent bonds leads to well-de® ned potential

minima and a dissociation limit much larger than typical vibrational frequencies. As

stated in section 1, `unrelaxed ’ features are remnants of the a ! 0 limit of the

vibrational Hamiltonian.

Since IVR is simply the evolution of bright states into a phase-decorrelated sum of

eigenstates, at long times all `bright state bases ’ must show qualitatively similar

behaviour. In that sense, conclusions from the couplings represented in such a basis

are also universal at long times or for averaged quantities. At short times, IVR is more

sensitive to the details of the anharmonic coupling structure, and one or another

`bright state basis ’ may be the best zeroth-order approximation, but any of them

provides a compact description of the initially excited feature state.

4.2. Factorization of the Hamiltonian

In addition to the trivial factorization of the coordinate part of the matrix element

in equation (4.1), it is less obvious that the potential constants V (n )
n themselves can be

logarithmically (product) expanded as

r V (n )
n r = 0

N

i = "
9 0 V ( $ )

i

a $i 1
n i /n

a
n i
i 9 0 N

j
" i

c( # )n i n jij 9 0 I : I : . (4.3)

Under certain assumptions, it can be shown that the ® rst product completely describes

potential constants as the number of vibrational nodes . ! ¢ (Madsen et al. 1997).

The ® rst term in equation (4.3) can therefore be viewed as an asymptotic description

of the PES which reduces all potential constants, whose number grows exponentially

with order n, to 2 . parameters V ( $ )
i (diagonal cubic potential constants) and a i

(Born± Oppenheimer parameters for each vibrational mode).

This description can be quite accurate for highly connected molecules even when

. is small, as seen in a comparison of factorized potential constants and a four

correlated pair generalized valence bond (GVB) calculation for SCCl
#

in ® gure 4.1.

Furthermore, it is quite su� cient for the purpose of calculating initial IVR decay rates

and dilution factors and following trends as a function of molecular size, mode

frequencies, etc. It is also competitive with ab initio calculations for high-order (n " 4)

constants, where even good surfaces are not likely to predict individual potential

constants to better than a factor of two (Madsen et al. 1997). The main drawback of

equation (4.3) is that it fails to predict the signs of potential constants. It has been

shown that for the purposes of IVR, these can be assigned randomly with good results,

based on comparison with the statistical distribution of signs derived from coordinate

potential surfaces (Gruebele 1996c, Pearman and Gruebele 1998a).

For molecules of lower connectivity (e.g. chain molecules) or with large atomic

mass disparities, the higher terms in equation (4.3) also become important (Pearman

and Gruebele 1998a). The coe� cients c( # )
ij

decorrelate pairs of modes from one
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Order
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Figure 4.1. Comparison of ab initio (`Exact ’ ) and factorization} scaling predictions for SCCl
#
.

Shown are average potential constant magnitudes and second moments of their

distribution (left-hand and right-hand bars) as a function of order n.

another, and can be evaluated approximately from a bond distance matrix and a

normal coordinate analysis of a speci® c molecule. The latter takes into account mass

eŒects (e.g. the idea that a very heavy atom will partition the molecular phase space

into quasi-independent parts), while the former takes into account the localization of

electron-pair bonds between atoms (e.g. the idea that local structural changes in non-

aromatic molecules lead to additive changes in the total energy). Figure 4.2 shows the

distribution of c( # )
ij

averaged over many organic molecules. While much of the

distribution corresponds to values ! 1 (decreasing the potential constants in equation

(4.3)), some c( # )
ij

also exceed 1, although they never exceed 1 } (a i a
j
), which would lead

to divergence of equation (4.3).

In sections 6, 7 and 9 we will predominantly use the simple PES model discussed

here. For transition-by-transition comparisons with small molecule experiments

(section 8), ab initio approaches will also be considered. The advantage of the

factorization method is that high-order couplings can be treated economically in large

molecules ; its disadvantage compared to ab initio methods is that individual low-order

couplings are not represented with enough ( ’ 50 %) accuracy to quantitatively predict

spectral features of small high-symmetry molecules such as acetylene.

4.3. Low-order versus high-order resonances

An important question which has not been systematically discussed in the past is

the relative contribution to IVR of low- and high-order resonances, and of direct

(resonant) and indirect (oŒ-resonant) coupling paths in a well-de ® ned basis rep-

resentation. (Indirect coupling paths are `chains ’ connecting two states via a third or

more intermediate states, as in Stuchebrukhov et al. (1993).) These are critical factors

in localization as they de® ne what types of ` jumps ’ are required in QNS to yield energy

redistribution.

Direct low-order couplings must clearly dominate at low energies over direct high-

order couplings, but at high energies and density of states this role is reversed. High-

order couplings become important for several reasons : the higher local density of

states oŒsets their smaller magnitude at high energies or in larger molecules ; they grow

faster in number with increasing energy and . ; they are weighted more due to the
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114 M . Gruebele and R . Bigwood

Figure 4.2. Frequency power spectrum and distribution function of c( # )
ij

coe� cients for an
average of many organic molecules. The c( # )

ij
values include eŒects of kinetic} distance

localization, which are more subtle in most molecules than implied by the diagrams in

® gure 3.2.
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M olecular vibrational energy ¯ ow 115

larger v̀
n / # factor in equation (4.2) (Bigwood and Gruebele 1995b, M adsen et al. 1997,

Pearman and Gruebele 1998a).

Semiclassically, a model for IVR via high-order resonances has been described by

Heller (Heller 1995). Here, we focus on an analysis of such couplings using the QNS

picture ( ® gure 3.1) and quantum mechanical matrix elements in equations (4.1) ± (4.3).

Both numerical simulations and analytical models show that direct high-order

resonances exceed direct low-order resonances as the vibrational energy and . are

increased, due to the faster growth in their numbers. The number of states directly

coupled to order n scales as E
n / # at su� ciently high energies (Madsen et al. 1997,

Pearman and Gruebele 1998a). There is a value n
max

of the order of couplings which

need to be included, which is E 4 at low energies, but can exceed 6 at high energies. For

example, n
max

is 4 for SCCl
#

up to 6000 cm Õ " , and n
max

is 5 between 6000± 9000 cm Õ " .

It is far less obvious that matrix elements of order n " 4 (e.g. quintic) also

dominate over coupling chains of order n 1 2 = n
"
1 n

#
(e.g. cubic plus quartic). On the

one hand, the coupling chains grow faster in number than direct couplings by a factor

of . . On the other hand, anharmonic potential constants multiplying these chains

have quasi-random signs (Pearman and Gruebele 1998a). The quasi-random signs

therefore associated with the coupling chains lead to phase cancellation. For coupling

chains involving p steps, the eŒective coupling increases nearer to p " / # Va
n

" +
n

# (random

walk result for identical couplings) than to pVa
n

" +
n

# (all signs the same) (Pearman and

Gruebele 1998a). Extensive numerical simulations treating the coupling chains as

random walks in QNS show that the importance of higher order couplings is sensitive

to the energy gap D E ij
between two states being coupled, and to the parameters Vi and

a i . Due to an exquisite cancellation of number growth and phase cancellation eŒects,

their importance depends much more weakly on the vibrational energy and size of the

molecule, except in the trivial sense that a higher density of states favours the small

direct couplings at small energy gaps (Pearman and Gruebele 1998a).

The average energy gap D E- in which higher order couplings ( ® fth and sixth)

dominate over low-order chains is generally of the order of a few wavenumbers,

corresponding to timescales of a few picoseconds or longer. Indeed, numerical

simulations show that while neglect of higher order couplings does not aŒect the very

short time IVR, their neglect aŒects IVR in the `transition regime ’ and leads to drastic

(greater than a factor of two) underestimates of dilution factors which characterize

IVR in the long time limit (Madsen et al. 1997) ; see section 6.3. The number of states

coupled to a given state by direct nth order couplings can be estimated using

N (n )
"

E q (n )
!

D E- , (4.4)

where q (n )
!

is the local density of states separated by n quanta from the state in question

(Pearman and Gruebele 1998a). Similarly, the contributions of coupling chains of

length m and overall order n can be represented by a unitless eŒective number of

coupled states N (n )
m

(Pearman and Gruebele 1998a). The total eŒective number of

coupled states is then given by

N
coupled

= 3
n ,m

N (n )
m

. (4.5)

These quantities take into account both the local density of states and the coupling

strengths V (n )
v´,v

, and should be used as the parameter against which IVR dilution

factors are plotted, rather than the total density of states.
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116 M . Gruebele and R . Bigwood

4.4 The Bose statistics triangle rule (BSTR ) model

We conclude our discussion of models with a statistically based simpli® cation of

the Hamiltonian matrix. Equation (4.1) is a simpli® cation of the molecular PES, but

still requires knowledge of all basis state quantum numbers v and v´. The resulting IVR

matrices or propagators are entirely non-statistical, although the matrix elements are

only approximate.

At high energies, many of the features of IVR can be captured if the basis state

manifold itself is treated statistically. An extreme form would be to apply the GOE

(Brody et al. 1981). Even for an exponential distribution of oŒ-diagonal elements,

terms farther from the diagonal eventually can be mimicked by such an ensemble.

However, except for the very highest energies, molecular IVR does retain some

memory of the coupling structure, and cannot be described by the GOE ensemble (see

section 6.2) (Gruebele 1996c).

The BSTR model (Gruebele 1996c) makes somewhat milder assumptions, and

appears similar to GOE only in the limit as a ! 1. It has two main ingredients as

follows.

(1) OŒ-diagonal matrix elements are given by equation (4.2), the values of n being

normal-distributed with

na F
E

eff

x
(4.6)

r #n F
2

.
E #

eff

x #
. (4.7)

Here E
eff

is the available vibrational energy with a zero-point correction and x

and x # are harmonically averaged molecular frequencies and square fre-

quencies (Gruebele 1996c).

(2) The coupling structure obeys a triangle inequality

r n
" #

– n
# $

r % n
" $

% r n
" #

1 n
# $

r , (4.8)

where nij
is the quantum number diŒerence between states i and j.

This vibrational triangle rule (VTR) leads to a more subtle localization of energy

¯ ow than simple kinetic isolation or spatial isolation possible in larger molecules

(® gure 3.2). In eŒect QNS regions are either coupled by several strong couplings or not

at all, reinforcing the strong couplings (Gruebele 1996c). In reality, this triangle

inequality is only a propensity rule : higher order contributions to matrix elements are

sometimes signi® cant (particularly for n = 1 or 2, which correspond to cubic or quartic

terms in a normal mode representation); furthermore, not all the potential constants

of a given order are even approximately equal in magnitude (® gure 4.1). However,

numerical simulations using an ab initio PES for SCCl
#

have shown that (4.8) still

holds for greater than 90 % of state triplets when accurate potential constants are used

(Gruebele 1996c).

We will use this model on several occasions where only averaged results are of

interest. Even in this simple form however, the model retains information about

molecular size and frequency distribution via parameters such as . , x and x # in

equations (4.6) and (4.7).
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5. Computational methods

5.1. Level selection

Bright state representations of H are not necessarily e� cient, even with the

exponential scaling of matrix elements. As discussed above, the smaller couplings

cannot be neglected if long time information is desired. Furthermore, the exponential

growth in the density of vibrational states as energy increases is unavoidable. Since

quantum dynamics is an NP class problem, the number of vibrational levels within a

reasonable energy window quickly becomes intractable even on fast large-memory

computers as one approaches energies where interesting dynamics can occur.

Fortunately, only a fraction of the total vibrational ensemble need be included in

any numerical simulation to obtain converged results at short to transitional times,

and in some cases at long times. The key is to identify these states before the memory

critical step of assembling the Hamiltonian matrix or propagator. In the following

paragraphs we discuss two closely related level selection algorithms we have developed

to address this problem (Bigwood and Gruebele 1995b, Bigwood et al. 1998).

The ® rst is based on a simple two-level perturbation criterion that is applied in a

tier-like fashion beginning from the spectroscopic bright state. In the ® rst tier, all states

within a speci® c bandwidth are compared to the bright level and given a mixing

weight,

, v´,v
=

1

[1 1 (E v´– E v) # } V #v´,v
] " / #

, (5.1)

where the E v are the energies of the states being examined and Vv´,v
is the matrix element

that couples them. The Lorentzian weight does an excellent job of describing the roll-

oŒof mixing between states and can be sequentially multiplied through the chain of

tiers to give an upper limit of the spectral bandwidth ( ® gure 5.1), (Bigwood and

Gruebele 1995b, Pearman and Gruebele 1998a). All levels with weights greater than

some threshold value (typically .001 to .01) are selected as ® rst-tier states. This process

continues for subsequent tiers with previously unselected levels being compared to

levels in the most recent tier, until some maximum number of tiers is reached (typically

between ® ve and ten).

While this method and similar ones (Wyatt et al. 1992, Zhang and M arcus 1992,

Stuchebrukhov et al. 1993) have proven e� cient enough to be used for many

calculations, such as the low-lying overtones of propyne (Bigwood and Gruebele 1997)

and several overtones and combination bands of SCCl
#
, there are a few critical multi-

level interactions that are not well addressed by a simple two-level picture. This is

illustrated in ® gure 5.2.

Using the two-level scheme above with a cut-oŒgreater than 0.1 and one tier, the

algorithm would select only the lower two levels, and result in a spectrum with two

strong transitions. Diagonalization of the full matrix would have yielded only a single

transition because the middle level would have been pushed out of range by its own

® rst tier state. The Distorted W ave Operator method (Iung et al. 1993, Maynard and

W yatt 1995) has a similar problem due to perturbation nonconvergence. Although the

above example is extreme, less severe but similar situations occur frequently in real

molecules. Equation (5.1) either misses important couplings or adds in unnecessary

couplings if the cut-oŒis set too small.

The problem is exacerbated in bright state bases, where the couplings re¯ ect the full

anharmonicity of the potential surface. At higher energies, such as those in the

thiophosgene molecule discussion in section 6, spectral features can be shifted by a few
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Figure 5.1. Comparison of the actual spectrum (lower diagram) with the perturbation

selection criterion (upper diagram, sum over all paths of all the products along coupling
chains weighted by the mixing criterion in equation (5.1)). The selection criterion is a

conservative spectral predictor which includes all states that make a signi ® cant

contribution to the ® nal spectrum.

|1>

|2>

|3>

V

E

V

10V

"bright"

0
D E

10D E

E
|a>

|b>

|c>

Y b » Y 3

SpectrumCoupling

Figure 5.2. A bright state r 3 ª predicted to mix with r 2 ª by a perturbation criterion in fact
produces only a single line in the spectrum, due to the fact that r 1 ª pushes r 2 ª out of

resonance.

hundred wavenumbers from the structurally closest basis state. Although a diagonal

anharmonic basis helps with overtones, it still results in many `accidental ’ resonances.

Experimental features (Nesbitt and Field 1996) are more directly related to such basis

functions, but they do not greatly simplify IVR calculations, where the progression to

dephased eigenstates is of interest.

To address this type of problem, we use the following variational enhancement of

equation (5.1). (Bigwood et al. 1998). At each tier level, the mixing factor is applied to

all levels within a large energy window (at least several times the highest vibrational

frequency of the problem), using a very conservative cut-oŒvalue. One is left with a

subset of `candidate ’ levels that may participate in the dynamics.

In the next step, a correction to the zeroth order energy of each of the candidate

levels is calculated by selecting the most strongly coupled `pusher ’ states (typically

about 20± 200). For example, for a harmonic overtone v = 8 basis function, these

include the v = 6, 7, 9, 10 overtone functions and a few other strongly coupled basis
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M olecular vibrational energy ¯ ow 119

states. Since we are interested only in approximate energy shifts, only one or two tiers

of pusher states are used with a high cut-oŒcriterion ( E .1). The resulting matrix

containing the candidate and its pusher states is diagonalized to give an improved

estimate of the candidate’ s ® nal energy.

Finally, the perturbation criterion is once again applied to the candidates, but now

using their adjusted energies, which allows the use of a less conservative ( E .01 to .03)

cut-oŒvalue. If a candidate passes this ® nal test, it and all of its pusher states are

included in the ® nal matrix. This results in a 2± 4-fold reduction of ® nal matrix size, or

an 8± 64-fold improvement in speed for the same accuracy.

This scheme eŒectively applies criterion (5.1) to a new set of D E v´,v
values which

have been shifted such that the important higher order interactions are readily

apparent. Another way of looking at it is that a normal mode basis is transformed into

an alternative bright basis corresponding to a better smoothed eŒective Hamiltonian

(equation (1.5)), but whose states do not yet show fragmentation of features into

eigenstates that would result from application of the full Hamiltonian.

Once the appropriate levels are selected, the sparse Hamiltonian matrix is

assembled using the same perturbation criterion to determine which matrix elements

should be included. It is important to note that in the end, there is no tier structure

imposed on the matrix. Each level has the potential to be coupled with every other

level, if the matrix element passes the cut-oŒtest (5.1). The resulting matrix has a

cluster-like topology due to the triangle propensity rule (Gruebele 1996c).

Pure dephasing spectral linewidths and survival probabilities are related by the

Fourier transform relationship. They are, in principle, determined equally well from

either time or frequency domain computations. In practice, time domain computations

can be considerably faster at the expense of uncertainties in the eigenstate energies and

intensities. There is, however, a rich pallet of more subtle phenomena that reveal much

more detailed information about the IVR mechanism, and can be most easily

extracted from one or the other computational method. For example, information

about the state space localization of individual molecular eigenstates is best obtained

by performing full frequency domain diagonalizations. Direct calculation of the

temporal ¯ ow of amplitude through the basis states, or inclusion of short laser pulses

in IVR simulations is most easily addressed with time domain computations. We have

developed new numerical methods for both approaches.

5.2. Frequency domain : Lanczos

The Lanczos matrix diagonalization algorithm lends itself exceptionally well to the

problem of large sparse matrices characteristic of molecules undergoing IVR (Nauts

and W yatt 1984). The algorithm itself is based on a simple recursion, that, in in ® nite

precision, generates a set of orthogonal Ritz vectors and coe� cients that tridiagonalize

the Hamiltonian matrix (Cullum and W illoughby 1985).

Due to the ® nite precision of computations, there is a loss of orthogonality as the

algorithm proceeds. If all eigenvalues are to be extracted, the tridiagonal Lanczos

matrix must be larger than the Hamiltonian matrix by some multiplicative factor that

grows with the system size. The eigenvalues generally appear as a function of Lanczos

matrix size with a rate roughly governed by the overlap of their eigenvectors with the

Lanczos starting vector, and their position in the matrix : eigenvalues in the wings

tend to appear more quickly than those in the centre. This can be circumvented by

remapping the Hamiltonian (Wyatt 1995). Eigenvectors of the Lanczos matrix can be

obtained by inverse iteration, which is particularly fast for a tridiagonal matrix with
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120 M . Gruebele and R . Bigwood

well converged eigenvalues. Eigenvectors of the Hamiltonian matrix require back

transformation, i.e. multiplication of the Lanczos eigenvector by the entire set of Ritz

vectors. With computer memory already strained by the size of the molecular

Hamiltonian matrix, it is impractical to store these vectors, and they must be

regenerated at a great penalty in speed.

We have implemented three major enhancements to the basic algorithm to

improve its e� ciency (Bigwood and Gruebele 1995b). The ® rst is an adaptive Lanczos

matrix size. Since, in practice, extracting the last ten per cent of the eigenvalues

frequently requires a Lanczos matrix more than twice as large as that required for the

® rst ninety per cent, it is e� cient to gradually ramp up the matrix size. This way, the

back transformation of the bulk of the eigenvectors requires only a minimal number

of Ritz vectors.

Yet more speed can be gained by batch processing of the eigenvectors. In our

implementation, any memory remaining after storage for the Hamiltonian matrix is

used to store Lanczos matrix eigenvectors. The Ritz vectors need only be regenerated

once for each batch of eigenvectors, yielding an improvement in overall speed by a

factor of three to four if 25 vectors can be stored.

The third and ® nal enhancement is the use of fully ® lled or multiple orthogonal

random starting vectors for the Lanczos recursion. In light of the fact that the

appearance of eigenvalues depends on their overlaps with the starting vector,

improvements can be gained by restarting the algorithm with a new random vector

rather than increasing the size of the Lanczos matrices to extract the last few

eigenvectors. This is particularly true for weakly coupled systems.

5.3. Frequency domain : matrix ¯ uctuation± dissipation (M FD)

If only a spectrum with m intensities is required, it should not be necessary to have

the full m # eigenvector components of the diagonalized Hamiltonian. Rather, a

`sideways ’ diagonalization algorithm that picks out only one component of each

eigenvector is su� cient. This is precisely the purpose of the matrix ¯ uctuation ±

dissipation (MFD) algorithm (Gruebele 1996a), which can be thought of as a

nonrecursive formula for the spectral residues (Gruebele 1996b).

The MFD theorem relates the spectral intensities to the susceptibility of energy

eigenvalues to changes in the bright state coupling matrix elements :

r © n r 0 ª r # =
1

2

1

E n – E ( ! )
!

¥ En ( k )

¥ k )
k = "

, (5.2)

where r n ª is the eigenstate with energy E
n
, r 0 ª is the spectroscopic bright state with

energy E ( ! )
!

, and k is a scaling parameter that is applied to the direct couplings between

the bright and bath states. As this method can be recast in the form of Green functions,

it is in the same family as the RRGM method (Wyatt 1989). It should be noted that

phase information (the signs of the eigenvector coe� cients) is not provided. This

presents no problem for the calculation of survival probabilities, due to the symmetry

of the propagator.

Numerically, all that is required are two eigenvalue computations, which can be

performed using Lanczos or any other large eigenvalue method such as Sturmian

sequencing, with far less cost than a full eigenvector calculation. In the case of the

Lanczos method, since only eigenvalues are required, the two back transformation

related enhancements are of no use, but the use of multiple Lanczos starting vectors

oŒers an increase in e� ciency for some systems.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



M olecular vibrational energy ¯ ow 121

EXACT (unitary)

x      = cos D t x   - sin D t y

y      = sin D t y  + cos D t x

n+1 n n

nn+1 n

FD (unstable)

1 x

y

x      =  x  - D t y

y      =  y + D t x
n+1 nn

nn+1 n

SUR (bounded)

1 x

y

x      =  x  - D t y

y      =  y + D t x
n+1 nn

nn+1 n+1

S  |cn|2  »  1

EVOLUTION

TIME

Energy

Figure 5.3. SUR propagator. Top left : exact unitary propagation for a single level ; middle

left : unstable forward diŒerencing ; bottom left : SUR immediately updates xn before

calculation of the imaginary part yn + "
. Geometrically, this algorithm can be thought of as

distorting the correct circular phase rotation into an ellipse, without secular magnitude

errors. Right : evolution of the phase circles with time produces the bright state spectrum

upon Fourier transform.

5.4. Time domain : shifted update rotation (SUR) and symplectic propagators

Time domain IVR calculations demand a propagator for the Schro$ dinger equation

that is stable, accurate over many characteristic system periods s (P( s ) = 1 } e) and also

memory e� cient. Shifted update rotation (SUR) (Bigwood and Gruebele 1995a) is a

member of the class of symplectic propagators which can be adapted for quantum

mechanical propagation (Gray and Verosky 1994). The basic algorithm is a small but

eŒective modi® cation to the forward diŒerencing method which, for a many-level

coupled Hamiltonian system, can be represented as

c (r)
j

(t 1 D t) = c(r)
j

(t) 1 D t 3
i

H (r)
ij

c (i)
i (t) (5.3 a)

c (i)
j

(t 1 D t) = c(i)
j

(t)– D t 3
i

H (r)
ij

c (r)
i (t 1 D t), (5.3 b)

where the c’ s are the real and imaginary parts of the system state vector, and the H ij
’ s

are the real matrix elements of the Hamiltonian. Unlike forward diŒerencing, which

uses c(r) (t) in equation (5.3 b), SUR is area conserving, although not unitary (® gure

5.3). SUR does not require any temporary storage vectors. Its phase error increases

quadratically in time, making it very competitive with standard algorithms at short to

intermediate times (Feit et al. 1982, KosloŒand KosloŒ1983, Tal-Ezer and KosloŒ

1984) when a sparse energy representation can be applied. This is very important in

IVR calculations out to a few 100 ps, since methods such as the BSTR require many

shorter calculations to allow for statistical averaging.
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122 M . Gruebele and R . Bigwood

While SUR is slower than some of the other symplectic integrators (Gray and

Verosky 1994), it is distinguished by the fact that it maintains its stability even in the

presence of complex valued, time-dependent matrix elements j ij
, for which the

algorithm becomes

c(r)
i (t 1 D t) = c (r)

i (t) 1 D t 3
j

{H (r)
ij

1 j (r)
ij

(t)}c(i)
j

(t) 1 D t 3
j

{H (i)
ij

1 j (i)
ij

(t)}c (r)
j

(t) (5.4 a)

c(i)
i (t 1 D t) = c (i)

i (t)– D t 3
j

{H (r)
ij

1 j (r)
ij

(t 1 D t)}c(r)
j

(t 1 D t)

1 D t 3
j

{H (i)
ij

1 j (i)
ij

(t 1 D t)}c(i)
j

(t). (5.4 b)

This fact becomes critical for modelling control of IVR using a laser pulse, where

j ij
(t) = l ij

% (t) is the product of the transition dipole matrix element and the pulsed

® eld envelope % (t) (section 9).

6. Predicting IVR : speci ® c examples

6.1. 1-propyne

The ® rst three acetylenic C E H stretching overtones and the combination band

m
"
1 2 m

’
all have been studied experimentally (Gambogi et al. 1993a, Go et al. 1993,

M cIlroy et al. 1994) and span the range from nearly complete localization to nearly full

IVR in the low density of states limit. As such, they oŒer an excellent opportunity to

compare with the predictions of our model.

SUR and Lanczos simulations were run with anharmonic overtone and com-

bination bright states as starting points. The factorization model of section 4.2 in a

diagonal anharmonic basis with diŒerent cubic coupling strengths and Born±

Oppenheimer scaling parameters for each mode ( ® gure 6.1) was used to calculate

matrix elements. In such a basis, the spectral features appear at the correct energy, but

show no fragmentation due to states carrying no oscillator strength. Some calculations

were also done with matrix elements including the eŒects of kinetic and distance

localization incorporated in the c( # ) values. In all cases, we obtain semi-quantitative

agreement with experiment by setting to 0.4 the average ratio of the cubic potential

constants Vi to the diagonal anharmonicities of the anharmonic normal mode basis

(Gambogi et al. 1993a, Go et al. 1993, M cIlroy et al. 1994, Bigwood and Gruebele

1997). This factor would be close to unity in a harmonic normal mode basis.

The nearly isoenergetic 3 m
"

and m
"
1 2 m

’
features are a particularly interesting case.

The P(t) from the spectra in ® gure 6.1 for both states exhibit a pattern of slowly

decaying, deep quantum beats. Even without c( # ) included, the long time decay rate of

the pure overtone state is slightly faster than that of the combination band. This is a

typical example of the competition between the lower connectivity of edge states and

the lower couplings (c ( # ) ! 1) between interior states when there is signi® cant kinetic or

spatial localization. If connectivity in QNS alone without regard to matrix element size

controlled the dynamics, the overtone should decay more slowly than the combination

band. In the case of 3 m
"

and m
"
1 2 m

’
, the partitioning of energy into the methyl and

acetylenic parts of the molecule is apparently su� cient to lower the rate of decay from

the m
"
1 2 m

’
feature even more, as seen in both experiment and calculation.

The eŒect is even more pronounced when a set of c( # ) values is used which

represents a lower bound on the possible values. The dilution factor of the m
"
1 2 m

’
feature increases considerably toward unity, and little fragmentation on a 1± 20 cm Õ "
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M olecular vibrational energy ¯ ow 123

(a)

IVR in 1± Propyne: Theory and Experiment

3 n 1

(b) (c)

0 .5cm-1 cm-1 cm-10 .5 -100

x10

100

cm-10 2

0

*

2cm-1 cm-1-100 100

n 1 +2 n 6

cm-10 2

4 n 1

-100 100cm-1 cm-1 cm-10 10 -100 100

x10 x10

x10
with c(2)

Figure 6.1. 3 m
"

(upper traces), m
"
1 2 m

’
(middle traces) and 4 m

"
(lower traces) transitions of

propyne as a function of excitation frequency from the feature centre. Column (a) :
experimental results (Crofton et al. 1988, Gambogi et al. 1993a, McIlroy et al. 1994).

Column (b) : detailed view of IVR computations with the factorized diagonal anharmonic

Hamiltonian. Column (c) : wider spectral overview of the same calculation with
theoretical state assignments for the gateway states. For the combination band in the

middle two traces, two calculations are shown : one without c( # ), and one with the most

conservative estimate of c( # ) (all coe� cients ! 1), which shows a considerable smaller r .
Many of the small transitions disappear due to partial localization of the acetylenic and

methyl CH stretching vibrations. Experiments have not covered the weaker feature

predicted about 1 cm Õ " from the largest peak.
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124 M . Gruebele and R . Bigwood

scale is left, indicating that some of the couplings responsible for IVR in the calculation

without c( # ) bridged the methyl } acetylenic regions and were eliminated. However, a

small transition a few cm Õ " from the main peak is still predicted, but lies outside the

experimentally scanned range.

It should be kept in mind that propyne is near the localization transition (Leitner

and Wolynes 1996a). Our prediction that combination bands should decay faster than

pure overtones based on low edge-state connectivity (Gruebele 1996c) is valid only

when averaged over a large number of diŒerent states, and su� ciently above the

threshold for IVR. At energies near the transition to delocalization, violations of this

principle are not uncommon. In this still oŒ-resonant regime, the precise location of

the few gateway states is the key factor in determining the early decay characteristics,

and propyne falls into this regime (Bigwood and Gruebele 1995b). At higher energies

and for fully interior states (unlike m
"
1 2 m

’
, which is just oŒ-edge) calculations for

interior and edge states of propyne indeed show that interior states decay faster

(Bigwood and Gruebele 1995b).

The third overtone shows evidence of strong oŒ-resonant couplings dominating

short time dynamics with a rapid initial drop to P(t) E 0.5, followed by a complicated

pattern of quantum beats over a wide range of timescales. The simulations for the third

overtone predict large oŒ-resonant gateway peaks which are in agreement both in their

assignments, and in their approximate positions from the central peak, with the

experimental data (McIlroy et al. 1994). The relatively smaller simulated peak

intensities indicate that the couplings to these levels are underestimated by the scaling

model. The second overtone and adjacent combination band spectra also show small

oŒ-resonant gateway states. These are estimated by our calculation to be a factor of 50

less intense than the main band, and experimental data in the area of these wings are

unavailable for comparison.

6.2. SCCl
#

Using the BSTR model, we have conducted numerous simulations of the

thiophosgene molecule (Gruebele 1996c) to compare with experimental and ab initio

results (section 8). Thiophosgene is particularly interesting because it allows one to

look at heavy-atom IVR directly : its bright states, which include multiple combination

bands of CS stretch, CCl stretch and bending modes are not unlike the interior states

of XH overtone initiated IVR (section 8) in large molecules. The results are

summarized in ® gure 6.2.

Figure 6.2(A) shows spectra and decays from the nominal C F S stretching overtone

at 12 000 cm Õ " for two cubic coupling strengths (the ® rst arti ® cially low at the IVR

threshold of V = 0.2 cm Õ " , the second corresponding to the average molecular value of

2.5 cm Õ " ). The change from quantum beats to a smooth decay is evident, although

even the smoothed lineshape does not appear exactly Lorentzian (vide infra).

Figure 6.2(B) presents the nearest neighbour level spacing statistics for excitation

into an interior state near the 12 000 cm Õ " stretching overtone. It is important to note

that even for couplings exceeding the actual molecular values, GOE statistics are not

completely reached, although the dilution factor r (Stewart and McDonald 1983) and

participating phase space fraction F (Stechel and Heller 1984) in ® gure 6.2(C)

approach values for nearly complete participation of the available levels. For F in

particular, the diŒerence in statistics between F = 0.25 and 0.3 can be signi® cant, and

an F as high as 0.2 and 0.27 does not generally go hand-in-hand with GOE statistics.

The bars on the dilution factors in ® gure 6.2(C) represent the second moment of

many BSTR results with diŒerent constrained random distributions of n from
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Figure 6.2. BSTR calculations for IVR in SCCl
#
. The results in this ® gure illustrate the generic

behaviour we ® nd for heavy-atom IVR. (A) Spectrum and decay for a small (0.2 cm Õ " )
and a realistic (2.5 cm Õ " ) value of the average anharmonic coupling in a normal mode

basis, showing transition from quantum beats to the smooth decay regime. (B) Level

spacing statistics from the calculation (circles) compared to Poisson (dotted) and GOE
(solid) results for V = 2.5 cm Õ " ; level statistics are always intermediate at realistic

coupling strengths. (C) Heller’ s F and McDonald’ s r values. The bars on r indicate the

spread of diŒerently seeded BSTR calculations, indicating great sensitivity of the
accessible phase space to V ( $ ) at intermediate values. (D) The initial (1 } e) IVR rate k

IVR
of SCCl

#
increases only very slowly once a critical density of states has been reached ;

there is no linear correlation between k
IVR

and total density of states. (E) P(t) is
exponential at early times, and power law as E t Õ $ / # in the transitional time before settling

into a constant value. (F) The rate as a function of anharmonic cubic coupling V ( $ ) shows

a threshold (k = 0), superexchange (k C V ( $ ) % ) and linear regime. As V ( $ ) is increased
further, there is presumably a ® nal discontinuity as the entire phase space is explored and

P C t Õ & / # . (G) P(t) for isoenergetic edge and interior states; the edge state has not achieved

the threshold local density of connected states to undergo IVR.
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126 M . Gruebele and R . Bigwood

equations (4.6) and (4.7). From the wide spread, one immediately concludes that the

coupling strength and the total density of states alone are insu� cient to describe the

threshold for delocalization. In a regime of intermediate coupling strength or density

of states, the local density of states coupled directly to the bright state must be known

in order to predict IVR, and is subject to wide ¯ uctuations between diŒerent

molecules. We will return to this in section 7 in connection with the q dependence of

dilution factor distributions averaged experimentally (Stewart and M cDonald 1983)

and theoretically (Bigwood and Gruebele 1997) over many molecules

The same threshold behaviour is evident in the early time dynamics, characterized

by k
IVR

rather than the dilution factor. Figure 6.2(D) shows the initial decay rate for

groups of isoenergetic states as a function of the density of states. It rises rapidly near

a threshold density q
th

E 8 cm Õ " , then levels oŒand becomes essentially independent

of the density of states. Whether the early or late time behaviour is used as a criterion,

the q dependence of the extent of IVR shows threshold and saturation behaviour

separated by a region of rapid change if the anharmonic coupling strength V ( $ ) is held

constant (section 7). This is quite incompatible with the idea that the IVR rate might

depend quadratically on V ( $ ) and linearly on q .

Figure 6.2(E) shows that P(t) initially has curvature in a log± log plot, cor-

responding to an exponential decay (after the initial cos roll-oŒ) as predicted by the

Golden Rule using ® rst-order perturbation theory. In the transitional regime however,

P(t) is linear on a log± log plot, in agreement with action-space renormalization models

(Scho® eld and W olynes 1993). At long times, P(t) ¯ uctuates about a constant value

due to the maximum number of participating states. The power law decay at

intermediate times indicates less e� cient energy ¯ ow than predicted by the Golden

Rule, and a non-Lorentzian lineshape ( ® gure 1.2). In the case of SCCl
#

this is due to

the triangle rule structure of the action space and exponential fall-oŒ of matrix

elements with n. It should be noted that the renormalization model predicts P C t Õ & / #

for . = 6 modes, while the calculated slope for interior states at 12 000 cm Õ " is 1.5,

indicating incomplete access to the total phase space (Gruebele 1998).

This goes hand-in-hand with the dependence of k
IVR

on energy. In terms of V
rms

,

k
IVR

is a quadratic function following the region below threshold, where k
IVR

is zero

or ill de ® ned. In terms of the cubic coupling strength V ( $ ), the story is very diŒerent

(® gure 6.2(F)). Following the threshold region where k
IVR

= 0, the rate rises rapidly as

V ( $ ) % in the oŒ-resonant regime, then becomes linear.

The V ( $ ) % dependence can be rationalized in terms of oŒ-resonant IVR (Bigwood

and Gruebele 1995b) : if the initial state couples to the long time manifold via an oŒ-

resonant state, two `perturbation ’ steps are required (see also ® gure 7.3(b)).

Essentially, the Golden Rule is replaced by a two-tier picture in which the ® rst tier has

only one or a few oŒ-resonant states, and the second tier has a high density of states.

At stronger couplings V , the linear dependence is in agreement with analytical

multi-tier models of IVR (Logan and Wolynes 1990). At even higher coupling

strengths, one might expect k to become linear with a larger slope, and P(t) to decay

as t Õ & / # as the full phase space becomes accessible, unless QNS localization is somehow

clamping the exponent (Gruebele 1998).

It should be noted that the transition from V ( $ ) % to linear V ( $ ) dependence occurs

at a very low coupling strength ( ! 1 cm Õ " ), well below the actual value of the cubic

anharmonicity of the molecule. In practice, IVR among heavy-atom modes in larger

molecules will generally occur in a regime where cubic coupling V ( $ ) and the Golden

Rule coupling V
rms

are not linearly related.
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Figure 6.3. (A) P(t) from the v = 5 CD stretching vibration, basis state amplitudes, and ® nal
spectrum of CDBrClF without an imposed tier structure. (B) When basis states are

binned into tiers using equation (5.1), analysis of the calculation in (A) shows sequential

¯ ow, validating the idea of tiers. Since kinetic} distance localization are unlikely in
CDBrClF, this would indicate extensive phase cancellation eŒects during IVR.

Finally, SCCl
#

also shows the typical behaviour for edge and interior states (® gure

6.2(G)) : on a given energy shell, interior states decay considerably faster than edge

states in a compact molecule when kinetic and spatial isolation do not play a role.

6.3. CDBrClF

Figure 6.3 shows the results of simulations on the v = 5 CD anharmonic stretching

bright state of CDBrClF with interlevel couplings calculated using the simplest scaling

rule in equation (4.2). No tiers were assumed in the calculation, but levels were

assigned to `tiers ’ using the non-variational selection algorithm in equation 5.1. It

should be emphasized that, unlike recent work in which tier assignments were made

according to a speci® c third-order coupling term (Beil et al. 1997), our tier assignments

are based on an eŒective mixing ratio V
v´v} D E

v´v
. This mixing ratio allows any order

coupling (here 3 ! n ! 10), provided the energy diŒerence between the coupled levels

is su� ciently small to allow mixing.
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128 M . Gruebele and R . Bigwood

Figure 6.3(A) shows the P(t) decay transient, the population of bright basis states

as a function of time t, and the ® nal spectrum. From this plot, it is clear that there exists

a small subset of levels which are responsible for the initial amplitude transfer out of

the bright state. Note that the initially populated basis states all lie to the blue of the

bright state. If the oŒ-diagonal coherences are included in the energy expectation

value, energy is nonetheless conserved.

The time-dependent normalized population of levels assigned to each tier is shown

in ® gure 6.3(B). The clearly sequential ¯ ow through the tier hierarchy is a validation

of our method of assigning levels, and shows that a tier picture can indeed provide

insight into the energy ¯ ow patterns even at high densities of states and for larger

molecules.

6.4. A simple model for methanol

Rizzo and co-workers made the interesting observation that the n m
OH

and

(n – 1) m
OH

1 m
CH

stretching bands, which are strongly resonant for n = 5, can show

very diŒerent amounts of fragmentation even at resonance (Kuhn et al. 1997). They

assign the more fragmented feature to a mixture with more OH-stretch character,

based on integrated line strength and the fact that the OH stretch is the bright state.

The less fragmented feature contains more of the CH bright state character. Two

possible explanations are that there is a fundamental dynamical diŒerence between the

‰ components of r 5 m
OH

ª ‰r 4 m
OH

1 m
CH

ª at 50 : 50 mixing, or that chance coincidences

with favourable distributions of dark gateway states account for the diŒerent

fragmentation.

Using a simpli ® ed version of equation (3.3) for the C
$ v

rotor case, the

corresponding oŒ-diagonal matrix element scaling, and the BSTR model, we have

calculated a statistical sample of possible IVR patterns for these two spectral features.

The main parameters are given in (Bigwood and Gruebele 1997) and have been

adapted here for a fourth-order coupling matrix element of 50 cm Õ " . W e ® nd that for

energy gaps D E
!

between the two zero-order states as small as 20 % of the coupling

strength, signi® cant diŒerences in fragmentation occur : 80 % of the calculations show

the mostly r m
OH

1 m
CH

ª feature to be more fragmented, while 20 % show the mostly

r 5 m
OH

ª feature to be more fragmented. For large D E
!
, the approximately r 5 m

OH
ª feature

is generally less fragmented, while for D E
!
= 0, the fragmentation is more similar for

the two features, although it still shows signi® cant variation for diŒerent randomly

seeded BSTR calculations. On the other hand, there seems to be no correlation

between the relative sign of the two bright basis states and which feature is more

fragmented. This makes sense based on ® rst-order perturbation theory (which would

be sign-independent), and seems to carry through even in a full calculation.

We conclude that dark state coupling variations can account for the observed

results. This would imply that isotopic substitution of the oxygen or carbon atoms

could lead to signi® cant changes in fragmentation patterns.

7. IVR : general results

7.1. Early, transitional and late times

We now return to the question of timescales ® rst discussed in section 1. DiŒerent

experiments address diŒerent aspects of the IVR process. Some experiments measure

the initial decay of the survival probability of a speci® ed bright state (Lehmann et al.

1994). Other experiments measure the fraction of `unrelaxed ’ wavefunction that

remains after long times (Parmenter 1983). Only rarely have experiments and theory
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M olecular vibrational energy ¯ ow 129

explicitly considered the transitional timescale between these extremes (Felker and

Zewail 1985, Kaufmann et al. 1989, Gruebele 1998). IVR can be subdivided into these

three distinct timescales, characterized by very diŒerent phenomena ( ® gure 1.1).

The earliest and historically the most commonly discussed IVR measure is the

initial P(t) decay of a spectral feature characterized by a lifetime s , as P(t) falls to a

value of 1 } e, and the corresponding width of the spectral envelope. The local density

of states and the speci® c couplings among states reasonably near the initial state in

energy and quantum number govern the early dynamics. As a result, the initial rate of

IVR and indeed whether a particular level will undergo IVR at all can be rather

unpredictable without a detailed analysis, especially in small molecules of high

symmetry (® gure 6.2(G)).

At a much later time, the accessible action space of a molecule has been explored

by the time-evolving bright state. The IVR packet has been distributed over bright

basis states far away in quantum number, although the corresponding eigenstates

essentially lie on the energy shell (depending on the width of the spectral feature and

laser pulse duration). The accessible phase space is ® nite, and particularly in smaller

molecules this manifests itself in a nonzero baseline value of P(t) (Pechukas 1982). This

end product of IVR, when the phases of eigenstates constituting the bright state are

minimally correlated, has been described by F (Stechel and Heller 1984) and r

(Stewart and M cDonald 1983).

At transitional times, molecules show novel behaviour connecting the early and

late regimes ( ® gure 6.2(E)). The dynamics depend on the coupling structure, such as

oŒ-resonant couplings from hydrogenic states or resonant heavy-atom couplings.

However, at high local densities of states this coupling structure does not necessarily

betray itself in terms of obvious quantum beats, but rather in terms of power law

decays or a nonquadratic dependence on the intrinsic anharmonicity of the vibrational

Hamiltonian (Scho® eld and W olynes 1993, Gruebele 1998).

As discussed earlier, although the exact description of the anharmonicity is

somewhat basis-set-dependent, the underlying nature of covalent molecular potential

surfaces leads to similar scaling of the couplings in any reasonable bright state basis

(normal, anharmonic, local mode). The local nature of IVR in the transitional regime

even opens the possibility of controlling the IVR process (section 9) (Gruebele and

Bigwood 1996).

7.2. Localization

A comprehensive understanding of localization phenomena is a prerequisite for

any mechanistic exploration of IVR. This was ® rst highlighted by Logan and W olynes

in 1990 in connection with Anderson localization (Logan and W olynes 1990, Leitner

and W olynes 1996a). The physical eŒects leading to localization have already been

discussed in examples in section 6. Here we summarize them and discuss them

systematically :

(1) the rapid decrease in coupling size with quantum number diŒerence between

states (Parmenter 1983, Bigwood and Gruebele 1995b) ;

(2) directional action space `bottlenecks’ (e.g. triangle rule in equation (4.8))

(Gruebele 1996c) ;

(3) quantum mechanical interference eŒects due competing phases or signs of

coupling matrix elements, particularly among oŒ-resonant coupling chains

(Gruebele 1996c, Pearman and Gruebele 1998a) ;
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130 M . Gruebele and R . Bigwood

(4) edge location in action space (Gambogi et al. 1993b, Bigwood and Gruebele

1995b) ;

(5) kinetic or spatial isolation for states in the interior of action space (Freed and

Nitzan 1980, M adsen et al. 1997) ;

(6) ® n ite size of phase space (Pechukas 1982, Stewart and M cDonald 1983).

Some of these (1, 6) are now well characterized, while the others are still under

intensive experimental and theoretical study. These factors are also by no means

independent from one another. The importance of localization cannot be overstressed,

particularly in the transitional time regime, where the vibrational wavepacket is

switching from local to global phase space exploration.

(1) Coupling size localization results from the rapid decrease in coupling matrix

element magnitude with order n (Rashev 1990). The exponential decrease allows one

to predict a maximum order n
max

(quantum number diŒerence between states) that will

play a statistically signi® cant role in IVR dynamics. As discussed in section 4, n
max

depends on molecular energy, size, and the timescale of interest. In the limit of low

energies and in small molecules, or at early times, n
max

may be E 4 ; in the limit of high

energies, or at long times, n
max

can exceed 6 and direct high-order couplings dominate

(Pearman and Gruebele 1998a).

In the ® rst limit, energy ¯ ow is more oŒ-resonant : it proceeds via chains of low-

order couplings oŒthe energy shell (Stuchebrukhov and Marcus, 1993). Since IVR

usually originates from features described by a small number of QNS cells, this has a

dramatic impact on IVR at short to intermediate times. At short times, the accidental

large or small size of couplings determines the initial rate k
IVR

. At intermediate times,

sequential ¯ ow limits the rate at which the vibrational energy can explore new parts of

action space.

In the second limit, large jumps in quantum number on or near the energy shell are

possible. In the QNS framework, resonant energy ¯ ow is con® ned within a

(hyper)polyhedron of radius n. These can determine how much of the action space is

eventually ® lled (Madsen et al. 1997, Pearman and Gruebele 1998a). In both limits, the

drop-oŒof couplings with n places an upper bound on the local density of states that

plays the major role in the threshold for IVR (equation (4.4) and Leitner and W olynes

(1996a)).

(2) Localization depends not just on the distance n in QNS, but also on direction

correlations in QNS. The simplest of these is embodied in the vibrational triangle rule

between triplets of n ij
in equation (4.8). Its eŒect is to impose a short range block-

diagonal topology on the Hamiltonian matrix due to the redundancy of strong

couplings. In the context of the QNS radius n polyhedra discussed above, the triangle

rule introduces localization by ruling out some levels that would be included in the

polyhedra by virtue of their radii alone.

This redundancy of couplings plays a role in the IVR dynamics during all phases

of IVR. At short and intermediate times, the further reduction in the local density of

states will result in somewhat higher IVR thresholds and slower rates. The most

dramatic eŒect of the triangle rule is at long times. Here, the resultant barrier to

exploration of large parts of the vibrational phase space will manifest itself in higher

dilution factors (lower F ratios) and prevention of true ergodicity.

(3) Even when coupling chains are strong, states can remain unmixed. This more

subtle localization eŒect is due to coherent cancellation between the multiple coupling

channels that exist between almost all states in a realistic model Hamiltonian.
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Figure 7.1. Extreme case of phase cancellation : on the left, states r v ª́ and r v ª are strongly

mixed, while on the right the eigenvectors of the lowest and highest energy eigenstates
share no simultaneous r v ª́ and r v ª components.

Although the eŒect of this on IVR is dramatic, it has received little explicit attention

in the literature (Pearman and Gruebele 1998a). Figure 7.1 shows an example of phase

cancellation for a four-level system. By merely changing the sign of one of the matrix

elements between the intermediate and ® nal levels, mixing can be completely

eradicated. Couplings in real molecules vary in size, and phase cancellation is not quite

in the random walk limit V
eff

£ k " / # V , where k is the number of coupling chains.

Nevertheless, interference is responsible for the observation in section 4 that phase

cancellation abates the dominance of coupling chains, leading to a balance of direct

high- and indirect low-order couplings in many cases. It can also be exploited in

controlling IVR (Gruebele and Bigwood 1996).

(4) The local nature of couplings among feature (or bright basis) states illustrates

most clearly the reason why edge states have higher IVR threshold energies and slower

initial decays (on average and in the absence of kinetic or spatial localization of interior

states in large molecules). This comes about simply because, by virtue of edge states’

proximity to the QNS axes, many of their potential couplings would lead to unphysical

negative quantum numbers in the remaining 2 . -tants of QNS. Their repertoire of

potential coupling partners is limited by their location in action space (® gure 6.2(G)).

(5) The local nature of molecular bonding and mass eŒects (Gambogi et al. 1993b,

Perry et al. 1995, M adsen et al. 1997, Pearman and Gruebele 1998a) lead to

localization among interior states with potentially many coupling partners (® gure 3.2).

Such localization can occur even, or especially, in very large molecules. Vibrational

couplings between features tend to decrease exponentially with the number of bonds

separating the atoms involved in the coupled vibrational motions (Pearman and

Gruebele 1998a). A simple example was already mentioned above in equation (3.2) : if

energy E is deposited in a k-branched molecule, it may be partitioned into k branches

with local energy E } k , lowering the eŒective energy available to IVR if the branches

are independent from one another. As another example, a very heavy atom can

separate a molecule kinetically into distinct regions, acting as a `wall ’ which prevents

access to the full QNS at long times.

Real molecules rarely fall into these limits, and moderate mass substitution or

increases in the number of bonds do not necessarily decrease IVR rates (Lehmann et

al. 1994). However, more subtle kinetic} distance localization does play a role, for

instance in the extreme motion states of propyne (Gambogi et al. 1993b) discussed in

section 6. Quantitatively, these eŒects are embodied in the c( # ) coe� cients discussed in

section 4.
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132 M . Gruebele and R . Bigwood

Very importantly, isolation localization implies size saturation of IVR. IVR

thresholds and short times rates as a function of molecular size eventually level oŒdue

to the fact that the additional phase space associated with larger molecules is not

initially accessible. This is the IVR version of functional groups in organic chemistry.

`IVR groups ’ are typically characterized by an exponential length scale of 1± 2 bonds

(Pearman and Gruebele 1998a). This makes them more extended than functional

groups and certainly partially overlapping (except in the unlikely case of a molecule

whose two halves are connected by a very heavy atom).

The isolation eŒect is strongest for linear molecules and weakest for aromatic ring

compounds (Pearman and Gruebele 1998a). One can also imagine an extreme case

where a chain can fold back on itself, and IVR is dominated by `intermolecular ’

eŒects. Such cases may be important in the function of proteins and other

macromolecules, but go beyond the scope of detailed discussion here.

(6) The ® nite extent of the available phase space causes equilibration at long times

(Pechukas 1982). There is a direct analogy with standard ® rst-order kinetics. Decays

to a zero baseline result from irreversible processes. A ® nite equilibrium constant

results in a ® nite baseline at long times. Similarly, a ® nite number N of accessible phase

space cells (i.e. states) results in a ® nal P(t) C 1 } N = r (Stewart and McDonald 1983).

The ® nite size of action space in small molecules also results in `re¯ ections ’ of wave

packet amplitude at the boundaries of QNS, as one source of quantum beats in

addition to a sparse coupling structure.

All of these factors combine in any molecular system to make IVR a highly

nonlinear process if thought of in terms of kinetic master equations (Gruebele 1998).

Localization eŒects preclude a description of IVR with only averaged parameters such

as q or V
rms

. Examination of the problem in a bright state basis reveals that the

¯ uctuations in the local density of states and coupling matrix elements are too severe

to be averaged out. Correlations persist among the eigenstates with dramatic

consequences.

One of the most interesting consequences of localization is the power law decay of

P(t) on the transitional timescale. This behaviour was ® rst predicted by an analytical

model using the state space formulation (Scho ® eld and W olynes 1993). In our

calculations, all signi® cant couplings were included, with no imposition of a particular

topology. Our ® ndings still show power law decays at intermediate times (e.g. ® gure

6.2(E)), although the behaviour can appear exponential at short times (Gruebele

1998).

As another consequence, the average behaviour of levels belonging to certain

classes such as interior} edge states, and trends as a function of molecular size and

shape can be predicted (Leitner and W olynes 1996a, Pearman and Gruebele 1998a).

7.3. Onset of IVR

The onset of IVR requires that the energy spacing of locally accessible levels in

QNS falls below a certain value characteristic of the coupling strength. Such states are

necessarily coupled to the bright state through low-order (typically third or fourth)

terms in the Hamiltonian. As a result, the accumulation of enough gateway bright

basis states to permit the ¯ ow of vibrational energy out of a given feature depends on

chance relationships between vibrational frequencies. This phenomenon is responsible

for a wide statistical spread in the value of the dilution factor r at intermediate state

densities.

Figure 7.2(A) shows dilution factors derived from experiments performed over a
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M olecular vibrational energy ¯ ow 133

Figure 7.2. Dilution factor distributions. (A) Experimental (McDonald and co-workers) and

calculated (BSTR) dilution factors for a number of organic molecules. There is a
threshold density q E 10 cm Õ " below which no signi® cant dilution occurs, followed by a

regime of large r ¯ uctuations, and a slower decrease in r for very large molecules. The

¯ uctuations are indicated by a bar for the BSTR calculations. (B) A plot of r against the
number of coupled states, which depends on the anharmonic coupling strength and local

density of states, shows better correlation with experiment. (C) The experimental and

BSTR distribution functions for r are bimodal, indicating rapid onset of IVR when the
anharmonic coupling strength exceeds a value dependent on the local distribution of

bright basis states.
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134 M . Gruebele and R . Bigwood

wide range of molecules and state densities (Stewart and McDonald 1983). Also

plotted here are the results of BSTR calculations corresponding to the same range of

organic molecules. The calculations show the same threshold and saturation behaviour

as the experiment : r = 1 at low state densities, followed by rapid ¯ uctuations in the

values at q E 10± 100 cm Õ " , followed by a slower decrease in r as molecular size and q

increase. The ¯ uctuations at intermediate r are due to the sensitivity of the local

density of states on molecular parameters in this regime.

Based on the previous section, a more natural horizontal axis would be the eŒective

number of directly coupled states 3 N (n )
"

, which increases much more slowly than

exponentially with energy. This unitless quantity given by equation (4.5) takes into

account the eŒects of the local density of states and coupling strength variations with

order n. Figure 7.2(B) plots r in terms of this quantity (evaluated approximately

according to equation (4.5) with direct couplings only from Pearman and Gruebele

(1998a) included). The transition to free IVR and full phase space access is more

pronounced in this plot, while ¯ uctuations in phase space access below the onset of

strong IVR still exist. The transition to full IVR is centred about 3 N (n )
"

E 1± 10.

Figure 7.2(C) shows the experimental distribution of r values as a function of

N
coupled

derived by logarithmically binning ® gure 7.2(B) (i.e. 3 N (n )
"

= 0.001± 0.010,

0.01± 0.1, etc.). It also shows a calculated distribution of r values for SCCl
#

by BSTR

as a function of increasing coupling strength V (analogous to raising 3 N (n )). The

striking feature is the bimodal nature of the distributions: molecules either undergo

IVR quite e� ciently or not at all. From the lack of intermediate dilution factors, we

can conclude that the delocalization transition for any given level is rapid and

concerted as coupling strength increases, not unlike a phase transition in larger

systems. The calculations are in good agreement with analytical forms initially

proposed for the dilution factor distribution (Leitner and W olynes 1996b).

Although these simulations show that the onset of IVR is sensitive to local

properties, some general trends hold true. Edge states and extreme motion states tend

to transition to IVR at higher energies and coupling strengths than their interior state

counterparts.This is due to the localization eŒects described in the previous subsection.

The same arguments can be made for the early delocalization of heavy-atom

vibrations, with smaller energy gaps and more on-resonant energy ¯ ow.

7.4. OŒ-resonant versus resonant and heavy-atom IVR

A useful way of classifying vibrations into groups that exhibit similar IVR

characteristics is on the basis of the energy separation between the bright state and its

® rst-tier states. Figure 7.3 shows the range of cases, from oŒ-resonant mixing, in which

the main IVR gateway levels lie far from the IVR linewidth, to on-resonant mixing

with gateway states within the IVR linewidth. Each of these mechanisms exhibit

dramatically diŒerent behaviour, and propyne is an example of the ® rst (section 6),

while SCCl
#

above 8000 cm Õ " is an example of the latter (section 8).

The question arises of how the initial IVR rate k
IVR

scales in these diŒerent cases

as a function of the cubic anharmonic coupling V ( $ ), rather than as a function of the

rms coupling V
rms

(section 3). This is important because only V ( $ ), not V
rms

, provides

a direct link between theory and the coarse features of the vibrational Hamiltonian on

the one hand, and with experiment on the other hand.

Vibrational levels falling into the oŒ-resonant class in general exhibit the quantum

beats or near exponential decays traditionally associated with IVR. However, the

mechanism in terms of bright state bases, which allow comparison of theory and
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Figure 7.3. (a) Limiting IVR behaviour in the QNS picture. Cases from Bigwood and

Gruebele (1995b). (b) OŒ-resonant, low density of states : below or near the IVR

threshold quantum beats may have a rapid initial decay, but W (t) remains localized at
long times and r is large (example : propyne 3 m

"
). (c) OŒ-resonant, higher density of

states : smooth exponential decay and V % scaling of k
IVR

. (d ) On-resonant IVR with power

law P(t) and linear k
IVR

± V ( $ ) relationship (example : interior states of propyne near 3 m
"
,

SCCl
#

at longer times in ® gure 6.2).

experiment, diŒers from a single-step Golden Rule : it corresponds at least to a two-tier

or oŒ-resonant mechanism (Stuchebrukhov and M arcus 1993) with k C V % (Bigwood

and Gruebele 1995b). The isolated gateway states may appear in the spectrum tens or

hundreds of wavenumbers away from the main cluster of lines associated with the

bright state, although they form a single feature together with the nominal bright state

(® gure 6.1). The decay patterns are generally dominated by quantum beats (e.g. v
"
=

3 in 1-propyne, ® gure 7.3(b)) or exponential decays (® gure 7.3(c)).

IVR from levels with resonant gateway states tends to show more dramatic

departures from `naive ’ application of the Golden Rule. Although k C q V #
rms

still

holds approximately, the relationship between rate and anharmonic coupling becomes

k C V ( $ ). This change in rate-coupling relationships follows from the behaviour of the

local density of states in analytical Caley tree models in the appropriate limit (Logan

and W olynes 1990, Leitner and Wolynes 1996a, b). In addition, decay transients in the

transitional time window are generally better described by power laws than by

exponentials ( ® gure 6.2(E)). A rate in the exponential sense cannot even be de® ned

(section 1).
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136 M . Gruebele and R . Bigwood

Edge states and light-atom motions such as the hydrogenic stretching overtones,

which with a few noteable exceptions (Smalley 1982, Felker and Zewail 1985, Geers

et al. 1994) represent nearly all of the experimental date for P(t), fall almost exclusively

into the oŒ-resonant regime due to their lower local densities of states as discussed

above. As such, they are more likely to show a k C V m dependence with m " 1 for the

anharmonic coupling strength V , not just for V
rms

. However, these states represent

only a small fraction of the total number of available vibrational levels of organic

molecules, even if only features with reasonable oscillator strength are counted.

Interior states and heavy-atom vibrations with their higher local densities of states

represent the overwhelming number of vibrational features. They most often fall into

the resonant regime, for which the QNS picture is more representative as a zero-order

approximation. Because they represent an overwhelming number of vibrational states,

they could arguably be said to represent generic IVR. M oreover, IVR at long times

involves the transport of vibrational energy across the heavy-atom molecular

backbone. Thus, all IVR, regardless of the initial state, progresses via resonant

mechanisms at intermediate to long times (see also section 4 on direct couplings versus

chains at small D E
!
). We address this experimentally in the next section.

8. An experiment : SCCl2

At intermediate times IVR in nearly all molecules is governed by `heavy-atom ’

motions, regardless of the nature of the initially prepared state. During this phase of

IVR the degree of randomization, which is critical to the RRKM theory of reaction

rates, is determined by the ability of the molecular backbone to transfer vibrational

energy.

Most experiments look at IVR initiated in hydrogenic stretching modes. The IVR

of the backbone manifests itself only indirectly in the fragmentation of the bright state.

Further fragmentation of the dark states and their coupling patterns are not easily

accessible in such experiments. A notable recent exception are vibration± rotation

double resonance experiments, which can probe the IVR properties of dark states

(Lee and Pate 1997).

Our approach is designed to look directly at backbone modes : we simply eliminate

all hydrogen atoms from the molecule to obtain a molecular model for pure backbone

IVR. As all ground state vibrations of thiophosgene (SCCl
#
) involve second- and

third-row atom motions, and four are Franck ± Condon active from the A4 and B4 states,

this small molecule is an ideal benchmark for direct experimental studies of the

mechanisms that govern resonant IVR and the transitional timescale. We describe

frequency domain experiments using dispersed ¯ uorescence (DF) and stimulated

emission pumping (SEP) under collision-free conditions in a molecular beam to

explore IVR in SCCl
#
, and to test the predictions of our theoretical models (Bigwood

et al. 1998).

Figure 8.1 shows SEP experiments at 3680 and 9700 cm Õ " above the vibrational

zero point energy. Dispersed ¯ uorescence spectra shows a sudden increase in the

number of transitions at the 20 cm Õ " resolution level about 8000 cm Õ " , indicating

fragmentation on a " 20 cm Õ " scale. The SEP spectra (0.2 cm Õ " resolution) reveal even

® ner structure : above 8000 cm Õ " , bright states assignable to nominal normal mode

states are fragmented to varying degrees on the energy shell.

The low-resolution DF data were directly ® tted (with ! 1.5 times the experimental

uncertainty) to a 6D fully anharmonic curvilinear surface (MPG2, Bigwood et al.

(1998)). To enhance convergence, this surface was initially pre-® tted to 1000 Monte

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



M olecular vibrational energy ¯ ow 137

|210200> |301000>

cm -1

36953670 97609640 A

B

C D
E

F

|5108> |5306> |8002> |320,12>

s =0.54 s =0.18 s =0.23 s =0.59

Figure 8.1. Vibrational features as measured by 0.2 cm Õ " resolution SEP experiments. In the

examples shown here, SCCl
#

is pumped from the vibrational ground state to the region

of the 1 # or 2 " 4 # B4 state vibrational levels (`dump states ’ ), then back down to the ground
state energies shown. Rotational contours have been deconvoluted, and individual

transitions assigned to r v
"
, v

#
, v

$
, v

%
ª features by comparing relative intensity changes from

diŒerent dump states. Higher resolution SEP scans to the right of the ¯ uorescence ladders
reveal weak localized anharmonic interactions at low energy and resonant IVR at high

energies. All features are normalized to the same maximum intensity ; arrows and dashed

lines indicate apparently unfragmented transitions with r = 1. Even at the 0.2 cm Õ "

resolution level, large ¯ uctuations in r on the energy shell at 9700 cm Õ " are evident,

indicating transition towards free energy ¯ ow among heavy-atom modes.

Carlo sampled four-pair GVB correlated ab initio points to assure inclusion of

reasonable terms in the PES up to 22 000 cm Õ " (Madsen et al. 1997). One interesting

question concerns the predictivity of the Hamiltonian derived from low-resolution

data for the high-resolution data. Fragmentation patterns similar to the SEP

experiments at 9700 cm Õ " are indeed predicted using SUR (section 5) and the DF- ® tted

experimentally derived potential surface (Bigwood et al. 1998). This indicates that the

coarse anharmonic level structure (feature structure) of the Hamiltonian does

constrain IVR on all timescales, possibly down to the eigenstate level. The ! 20 cm Õ "

energy scale structure of the fragmented features at 9600 cm Õ " is mostly resonant in

terms of couplings of a normal coordinate Hamiltonian derived from the curvilinear

DF- ® tted PES, and can be assigned to resonant gateway states. Analysis of the

coupling structure shows that IVR on all energy scales has a signi® cant on-resonant

component for heavy-atom vibrations.

Scanning the energy from the zero point to " 15 000 cm Õ " allows one to scan the

total density of A
"

symmetry states from 0.02 cm Õ " to 200 cm Õ " . At the same time, the

local density of states scans to " 1 cm Õ " , roughly the density of gateway states observed

in the spectrum for clumps at high energy. The behaviour of the features closely

mimics ® gure 7.2. At low energy they correspond to a single eigenstate, such as the

r 210200 ª state at the bottom of ® gure 8.1. At high energies, fragmentation becomes

very sensitive to the coupling structure : unfragmented (dashed) features are

interspersed with highly fragmented features (e.g. point B on ® gure 8.1). The observed

pattern is compatible with the large ¯ uctuations predicted for the dilution factor at the

transition to free energy ¯ ow, and with a bimodal distribution.

A detailed analysis of the experimentally derived Hamiltonian will show whether

k C V ( $ ) and if nonexponential P(t) occur at higher energies. SCCl
#

should become an

ideal system for studying IVR among heavy-atom vibrations from the sparse to nearly

irreversible regime.
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Molecular control

"Franck-Condon control"

"Dynamic coherent control"

-Simple narrow  bandw idth field

-Robust
-Requires direct dissocia tion or shape preserv ation

-On arbitrar y bound or unboun d surfaces
-Sensitive  "guidin g" and feedback problem

 through  large phase space

n

n

"Static coherent control"

-Franck-C ondon shaping in initial step

-Coherent  shaping to "stabilize" sim ple
 nonstati onary state near origina lly accessed

 phase space

n

Figure 9.1. Approaches to molecular control. Upper diagram : Franck± Condon control uses
a preparation pulse to shape the dissociative wavepacket and place it on diŒerent regions

of the potential to obtain speci® c reactivity. Middle diagram : dynamic coherent control

uses quantum interference via a set of intermediate states (not shown) or by cycling
amplitude between several surfaces. Lower diagram : our proposed static coherent

control combines Franck± Condon pre-shaping (green and blue features) with coherent

cycling and phase chirping to freeze the polyatomic molecular phase space into a lower-
dimensional manifold.
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M olecular vibrational energy ¯ ow 139

9. Coherent freezing of IVR

9.1. M otivation

Two successful frameworks for controlling unimolecular reactivity have emerged

during the last decade. One uses quantum coherence to control reaction dynamics

(Brumer and Shapiro 1989, KosloŒet al. 1989, W arren et al. 1993, Krause et al. 1995).

The other involves Franck± Condon control, usually on a rapidly dissociative surface

(Bronikowski et al. 1991, Crim 1993). They are illustrated in ® gure 9.1.

The idea of Franck± Condon control is to shape the reactive wave packet by

pumping it from diŒerent intermediate states ( ® gure 9.1, top). DiŒerently shaped wave

packets are launched with diŒerent momenta, and may concentrate in one of several

reaction channels. An important restriction is that dissociation must either be direct,

or memory of the induced shape must be retained in some other fashion during

reaction. The idea has been successful with several small polyatomic molecules

(Bronikowski et al. 1991, Crim 1993).

Dynamic coherent control is more general because the wavepacket can be optically

modi® ed during the reaction process, limited only by the structure of the available

eigenstates. The shape of the reactive wavepacket can be controlled by quantum

interference through either a set of intermediate states (Brumer and Shapiro 1989), or

by coherent cycling between several sets of states (e.g. on two surfaces, ® gure 9.1,

middle) (KosloŒet al. 1989, Scherer et al. 1991). This then becomes a guidance and

feedback problem (Warren et al. 1993). Experimentally, coherent control has been

achieved in systems with one or two heavy atoms (Park et al. 1991, Warren et al. 1993).

IVR poses a challenge to both approaches when applied to multidimensional

bound surfaces of polyatomic molecules ( " 2 second or higher row atoms). It destroys

memory of wavepacket shape through dephasing, which directly negates the ® rst

approach. It complicates the second approach : the guidance problem can be solved in

principle by feedback, no matter how complex the structure of the underlying

eigenstates, but impractical ® elds and amounts of feedback information may be

required to guide the wavepacket far away in phase space from its initial location. This

is exacerbated by the fact that most current experiments read out only a few highly

averaged feedback parameters, in eŒect providing a very small and fuzzy window on

wavepacket motion.

In a trivial sense, IVR simply sets values for the eigenstate transition moments and

energies through the presence of features. In practice however, the knowledge gained

by a careful analysis of IVR (sections 1± 8) provides much guidance to design a robust

control experiment, much in the sense that a bridge engineer would use guiding

principles to construct an embankment, rather than to use feedback in the form of

collapsed embankments to improve design.

Figure 9.1 (bottom) proposes a scheme we call `static ’ coherent control, which

combines features of Franck± Condon and coherent control to eŒect selective reactions

in polyatomic molecules (Gruebele and Bigwood 1996). Rather than guiding the

wavepacket far away in phase space, the goal is to control reactivity by `freezing ’ it in

place, that is, by turning oŒIVR. This switches the timescales of dissociation of an

activated bond (often slow) and IVR from that bond (often fast). Selectivity is

achieved in two steps : a speci ® cally shaped bright (pre)dissociating state is excited on

a (pre)dissociative surface ; IVR is then frozen by a coherent laser pulse.

The ® rst `Franck± Condon ’ step sets up selective reactivity : feature states or

resonances have simple nodal structures following excitation, and couple to reactive
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140 M . Gruebele and R . Bigwood

continuum channels in speci® c non-statistical ways. This speci ® city is usually lost

before dissociation occurs due to phase decorrelation of the feature by IVR. The

second `coherent ’ step maintains speci® city by `freezing in ’ the initial wavepacket

shape, i.e. by slowing down the IVR process. The problem of slowing down dephasing

is simpler and more robust than the general control problem because the goal is merely

to maintain the wavepacket in a known part of phase space.

The second step is possible because the system evolves under a joint molecule± laser

Hamiltonian during excitation ; coherent cycling and chirped excitation of diŒerent

eigenstates under a feature can maintain the initial simple nodal structure of a feature

for t " 1 } k
IVR

. In eŒect, coherent control reduces the molecular projection of the total

Hamiltonian to a low-dimensional system where Franck ± Condon control is eŒective,

by increasing the dephasing timescale beyond the dissociation timescale even in the

presence of a bound potential well.

The key to this second step is the slower than exponential IVR among the skeletal

vibrational modes. Power law decays P(t) C t Õ d / # with exponents d of the order of 2± 4

are generic features of IVR experiments (Kaufmann et al. 1989, Gruebele 1998) and

simulations (Gruebele 1996c, 1998). The number of control parameters is roughly

2 } P(t) because there is a phase and an amplitude to be controlled for every

participating state. If decays were exponential, the number of control parameters

would grow exponentially with time, but instead it just grows as a polynomial.

In keeping with the main topic of this review, we now address the problem of

coherently slowing the dephasing process in a manner that maintains the initial feature

state (Gruebele and Bigwood 1996). W e will discuss the speci® c example of SCCl
#
. It

should be emphasized that either maintaining population in the upper state by

continuously pumping, or by exciting a narrow bandwidth to obtain a near-stationary

state, are not helpful because the resulting states have an eigenstate-like quasi-random

nodal structure. Coherent control works by freezing the molecular wavepacket in the

reactive manifold into its initial simple nodal structure for a su� ciently long time.

9.2. Freezing IVR in SCCl
#

With the objective of stemming vibrational dephasing for a time long enough to

observe selective chemistry, we have developed a numerical model for the de-

termination of optimal laser pulses to be used as the starting point for IVR control

experiments. Here, we brie¯ y discuss the molecule-radiation Hamiltonian, electric

® eld representation, and optimization procedure.

In the semiclassical ® eld representation, the Hamiltonian becomes

H = H
mol

1 H
int

(t). (9.1)

For the molecular Hamiltonian, we use the factorization model for SCCl
#

from

sections 4 and 6 (® gure 4.1) (Madsen et al. 1997). This performs exceedingly well at

predicting the positions and coupling strengths of the ® rst few gateway states, which

are by far the most important in controlling IVR at short times. To this, we add a

single level r 0 ª to represent the initial state manifold. (Even more ¯ exible control is

possible with more levels.) The target for freezing is the time-independent bright state

r i ª , which carries all the oscillator strength. It then follows that © i r H
int

r 0 ª =

© i r l r 0 ª [ E(t) represents the coupling by the electric ® eld. In practice, we prediagonalize

H
mol

using equation (5.2) so that H takes on a Golden Rule form, except that the

couplings are now time-dependent and couple the ground state r 0 ª to the

prediagonalized upper state manifold over which the oscillator strength of r i ª has been
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Freezing SCCl2 IVR

50

40

10

0

x
1

0
-3

P(t)

20151050

Time, ps

E
(t)

0.12

0.08

0.04

0.00

20151050

Time, ps

E
(t)

P(t)

©Natural© IVR transient

FT-limited pump pulse envelope

©Frozen© IVR transient

Shaped control pulse envelope

Figure 9.2. SUR calculation of coherent manipulation of IVR in the v
"
= 8 state of SCCl

#
using a factorized Hamiltonian. Upper diagram : using Fourier-transform-limited 0.5 mJ
80 fs Gaussian pulse. Lower diagram : using same pulse shaped by a 64-element phase

and amplitude modulator. The pulse has a simple amplitude and phase structure and

narrow bandwidth, yet freezes the feature in place for 100 times longer than the transform-
limited pulse. Note that the pulse duration is shorter than the freezing time, and that

constraints in the calculation ensure that the target is a coherent single-feature wave

packet, and not a continuously replenished incoherent upper state population.

distributed. This form of H is ideally suited for propagation by equation (5.4) which

implements nonperturbative propagation in the strong-® eld limit.

The electric ® eld is represented in a Daubechies wavelet basis. In addition to the

computational speed, wavelets provide a nearly physical representation of the discrete

phase and amplitude channels of available experimental (Kawashima et al. 1995,

Dugan et al. 1997) pulse shaping systems. By physically modelling the input pulse,

pulse dispersion and the pulse control mask, the laser pulses are kept in the realm of

what can be achieved in the laboratory. The total input bandwidth is constrained by
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142 M . Gruebele and R . Bigwood

a ‰300 cm Õ " wide Gaussian envelope, and the pulse area is not allowed to exceed a

reasonable maximum value.

The maximum time step in the SUR algorithm is limited by the total bandwidth of

the system. For e� ciency, we make the rotating wave approximation, subtracting oŒ

the central frequency from the laser ® eld, and from the energy diŒerence between the

ground and bright states. This approximation is valid for resonant laser pulses with

intensities that are typical of our laser system.

The optimization is performed by simulated annealing to avoid trapping in one of

many possible local minima. Ideally, one would like the evolving state W (t) to remain

perfectly localized at r i ª , with the survival probability, P(t) = r © W (t) r i ª r # , unity at all

times. W e therefore choose the integrated survival probability,

W = &
tmax

!

P(t) dt (9.2)

as the function to be optimized to a desired time t
max

. Requiring not just the ® nal state

at t = t
max

to be near r i ª makes the solution less optimal but more robust since the

wavepacket is prevented from escaping the initial region of phase space at intermediate

times.

As discussed in the last section 9.1, several trivial cases must be avoided. A pulse

shape which maximizes equation (8.2) by e� ciently pumping a large population into

the target wavefunction at short times without slowing the decay rate is of no help in

creating long-lived bright state wavepackets for selective chemistry experiments.

Normalizing W by (1– P
gnd

), the population remaining in the ground state at long

times, addresses this issue. Another uninteresting result is obtained when the laser

bandwidth is reduced to the point of pumping a few closely spaced eigenstates, since

a single eigenstate of course has a small but constant overlap with r i ª . Calculating P(t)

by projecting onto the eigenstate spectrum of the bright state r i ª , in conjunction with

the above normalization by (1– P
gnd

) eliminates this possibility.

Figure 9.2 presents the results of an optimization of IVR in thiophosgene v
"

= 8.

W hen pumped with a Fourier-transform-limited Gaussian pulse, the `natural ’ IVR

proceeds with a rapid initial decay, followed by a series of small quantum beats.

Pumped by an optimized pulse, the initial fast decay is slowed by nearly two orders of

magnitude. This calculation was done using only 64 control channels, and results in a

relatively smooth electric ® eld envelope. Sensitivity to small changes in the ® eld is quite

low, as evidenced by a rapid approach to convergence as the coarse ® eld structure in

the four-lobed pulse appears. This is what one should expect from a tier picture, as

most of the decay arrest occurs by manipulating coherent cycling between the ground,

bright, and the few gateway states with direct couplings to the bright state. It should

be noted that the 5 ps duration of the control pulse is still noticeably shorter than the

lengthened P(t).

We believe that this type of IVR coherent control, coupled with exploitation of

Franck± Condon eŒects, can provide a simple and robust route to polyatomic

molecular control.

10. Conclusions

The following are the messages we hope the reader will take away from this

summary of recent developments.
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(1) In the feature to eigenstate hierarchy, features occupy an equally important

position ; features are remnants of the uncoupled Hamiltonian which organize

spectra due to the small ratio of anharmonic terms V ( $ ) anÕ $ to harmonic terms

x in the molecular Hamiltonian.

(2) The vast majority of IVR in the intermediate time regime proceeds via the

heavy-atom backbone. The resulting slower than exponential dephasing in

the intermediate regime provides a handle for coherently controlling the IVR

process.

(3) Localization in various guises plays a dominant role in IVR, and its eŒects are

best seen in bright state or feature bases, which emphasize the simple

wavefunction patterns ultimately responsible for localization. Localization

plays a role at transitional and late times, and goes well beyond the appearance

of quantum beats and similar well studied phenomena in sparse systems.

(4) Heavy-atom participation, interior location of a state in QNS, and importance

of direct couplings at a high local density of states predispose IVR to occur via

on-resonant mechanisms. The initial rate k
IVR

is then related linearly to

anharmonic couplings among features of the Hamiltonian ; decay at longer

times is not characterized by a rate at all, but rather by a power law with an

exponent depending on the size of the accessible phase space ; the ultimate

dispersion 1 } r of the wave packet through state space is much greater.
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